Python数据分析–Numpy常用函数介绍(6)–Numpy中与股票成交量有关的计算

        成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图、周线图、月线图甚至是5分钟、30分钟、60分钟图中绘制。

  股票市场成交量的变化反映了资金进出市场的情况,成交量是判断市场走势的重要指标。一般情况下,成交量大且价格上涨的股票,趋势向好。成交量持续低迷时,一般出现在熊市或股票整理阶段,市场交易不活跃。成交量是判断股票走势的重要依据,对分析主力行为提供了重要的依据。投资者对成交量异常波动的股票应当密切关注。

  OBV(On-Balance Volume,净额成交量或叫能量潮指标)是最简单的股价指标之一,它可以由当日收盘价、前一天的收盘价以及当日成交量计算得出。以前一日为基期计算当日的OBV值(可以认为基期的OBV值为0)。若当日收盘价高于前一日收盘价,则本日OBV等于基期OBV加上日成交量。若当日收盘价低于前一日收盘价,则本日OBV等于基期OBV减去当日成交量。若当日收盘价相比前一日没有变化,则当日成交量以0计算。

一、OBV计算

  鉴于上述计算方法,需要在成交量前面乘上一个由收盘价变化决定的正负号(收盘价低于前一交易日收盘价,负号,收盘价高于前一交易日收盘价,正号)。在本篇中,学习该问题的两种解决方法,一种是使用NumPy中的 sign 函数,另一种是使用NumPy的piecewise 函数。

1) 把数据分别加载到收盘价和成交量的数组中:

close,vol = np.loadtxt('data036.csv',delimiter=',', usecols=(5,6),converters={1:datestr2num},unpack=True)

data036.csv中的第6列和第7列分别为收盘价和当日成交量。

前篇介绍过numpy.diff()可以计算相邻的差(即上述收盘价close的差值),并利用这个差值, 用sign 函数计算正负号

changes = np.diff(close)
signs = np.sign(changes)
print ("Signs", signs)

运行结果:

Signs [-1. -1. -1. -1.  1.  1.  1. -1.  1.  1.  1. -1.  1. -1. -1. -1. -1.  1.
  1. -1. -1.  1.  1.  1.  1.  1.  1.  1. -1.  1.  1.  1. -1. -1. -1.  1.
 -1.  1.  1.  1. -1. -1.  1.  1.  1. -1. -1.  1.  1.  1.  1.  1.  1. -1....

2)也可以使用 piecewise 函数来获取数组元素的正负。 piecewise函数可以分段给定取值。使用合适的返回值和对应的条件调用该函数:

pieces = np.piecewise(changes, [changes < 0, changes > 0], [-1, 1])
print("Pieces", pieces)

3)判断是否 sign 函数和piecewise 函数计算结果是否一致用array_equal()函数:

print ("Arrays equal?", np.array_equal(signs, pieces))

运行结果:

Arrays equal? True

4)由于diff()y计算的结果是相邻数据相减,因此得到419个数据,较从文件中导入的数据420个少一位,因此无法计算首日的OBV值

obv_values = vol[1:] * signs          #计算obv值
print("obv values:",obv_values[:20]) #打印前20个obv值

完成代码如下:

import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
import sys,os

def datestr2num(s): #定义一个函数
    return datetime.strptime(s.decode('ascii'),"%Y-%m-%d").date().weekday()

close,vol = np.loadtxt('data036.csv',delimiter=',', usecols=(5,6),converters={1:datestr2num},unpack=True)
#new_close = np.loadtxt('data999.csv',delimiter=',', usecols=(5,),converters={1:datestr2num},unpack=True)

changes = np.diff(close)
signs = np.sign(changes)
print ("Signs", signs[:20])#打印前20个signs值

pieces = np.piecewise(changes, [changes < 0, changes > 0], [-1, 1])
print("Pieces", pieces[:20])#打印前20个pieces值
print ("Arrays equal?", np.array_equal(signs, pieces))

obv_values = vol[1:] * signs          #计算obv值
print("obv values:",obv_values[:20]) #打印前20个obv值

运行结果:

Python数据分析--Numpy常用函数介绍(6)--Numpy中与股票成交量有关的计算

二、 计算单个交易日的利润

1)读入数据

将所有交易数据(开盘价、收盘价、最高价、最低价,成交量等)加载到对应的数组中

import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt
import sys,os

def datestr2num(s): #定义一个函数
    return datetime.strptime(s.decode('ascii'),"%Y-%m-%d").date().weekday()

opens,highs,lows,closes,vols = np.loadtxt('data036.csv',delimiter=',', usecols=(2,3,4,5,6),converters={1:datestr2num},unpack=True) #开盘价、最高价、最低价、收盘价、成交量数组。

2)调用 vectorize 函数并给定calc_profit 函数作为参数:

(1)先定义一个计算利润的函数:这个函数,是以开盘价买入,以当日收盘价卖出,所获得的利润即买入和卖出的差价。事实上,计算相对利润更为直观。

def calc_profit(opens, highs, lows, closes):
    buy = opens * 1
    if lows < buy < highs :
        return (closes - buy)/buy
    else:
        return 0

(2)调用 vectorize 函数并给定calc_profit 函数作为参数

func = np.vectorize(calc_profit)
profits=func(opens,highs,lows,closes)

print ("Profits", profits)

3)选择非零利润的交易日,并计算平均值:

real_trades = profits[profits != 0]
print ("Number of trades", len(real_trades), round(100.0 * len(real_trades)/len(closes), 2),"%")
print ("Average profit/loss %", round(np.mean(real_trades) * 100, 2))

当然也可以分别计算盈利和亏损:

real_trades = profits[profits > 0]
print ("Number of trades", len(real_trades), round(100.0 * len(real_trades)/len(closes), 2),"%")
print ("平均盈利: %", round(np.mean(real_trades) * 100, 2))

loss_trades = profits[profits < 0]
print ("Number of trades", len(loss_trades), round(100.0 * len(loss_trades)/len(closes), 2),"%")
print ("平均亏损 %", round(np.mean(loss_trades) * 100, 2))

实际运行结果:

Python数据分析--Numpy常用函数介绍(6)--Numpy中与股票成交量有关的计算

三、数据平滑

噪声数据很难处理,因此需要对其进行平滑处理,除前篇介绍的计算移动平均线的方法,还可以使用NumPy中的一个函数来平滑数据。hanning 函数是一个加权余弦的窗函数。
1)调用 hanning 函数计算权重,生成一个长度为 N 的窗口(在这个示例中 N 取8)

N=8
weights = np.hanning(N)  #调用hanning 函数计算权重,生成一个长度为8的窗口
print("Weights", weights)

运行结果:

Weights [0.         0.1882551  0.61126047 0.95048443 0.95048443 0.61126047 0.1882551  0.        ]

2)用 convolve 函数计算closes的股票收益率,以归一化处理后的 weights 作为参数

closes_returns = np.diff(closes) / closes[ : -1] #计算收盘价相邻差价
smooth_closes = np.convolve(weights/weights.sum(), closes_returns) [N-1:-N+1]#利用权重,计算数据平滑
opens_returns = np.diff(opens) / opens[ : -1] #计算开盘价相邻差价
smooth_opens = np.convolve(weights/weights.sum(), opens_returns) [N-1:-N+1]

3)用 Matplotlib 绘图

t = np.arange(N - 1, len(closes_returns))
plt.plot(t, closes_returns[N-1:], lw=1.0)
plt.plot(t, smooth_closes, lw=2.0)
plt.plot(t, opens_returns[N-1:], lw=1.0)
plt.plot(t, smooth_opens, lw=2.0)
plt.show()

运行结果:

Python数据分析--Numpy常用函数介绍(6)--Numpy中与股票成交量有关的计算

4)

如上图中的折线有交叉,这些交叉点可能就是股价趋势的转折点,至少可以表明closes和opens之间的股价关系发生了变化,这些转折点可能会经常出现,可以利用它们预测未来的股价走势。

使用多项式拟合平滑后两组数据,解出的两个多项式取值相等时(即在哪些地方存在交叉点),这等价于先对两个多项式函数作差,然后对所得的多项式函数求根。使用 polysub 函数对多项式作差如下:

t = np.arange(N - 1, len(closes_returns))
poly_closes = np.polyfit(t, smooth_closes,N) #求收盘价的多项式
poly_opens = np.polyfit(t, smooth_opens, N)  #求收盘价的多项式
poly_sub = np.polysub(poly_closes, poly_opens)  #polysub函数对多项式作差,
xpoints = np.roots(poly_sub)    #对所得的多项式函数求根
print("Intersection points:", xpoints)

运行结果:

Intersection points: [403.82451866 354.50031142 289.94335284 213.44012464 185.82581983
  97.72837787  51.03724424  18.28586259]

5)用 isreal 函数来判断数组元素是否为实数,用 select 函数选出它们。 select 函数可根据一组给定的条件,从一组元素中挑选出符合条件的元素并返回数组。

得到的实数交叉点、再去掉其中为0的元素。 trim_zeros 函数可以去掉一维数组中开头和末尾为0的元素。

reals = np.isreal(xpoints)  #用isreal 函数来判断数组元素是否为实数
print ("Real number:", reals)

xpoints = np.select([reals], [xpoints]) #select 函数根据一组给定条件,
xpoints = xpoints.real # 从一组元素中挑选出符合条件的元素并返回数组
print("Real intersection points:", xpoints)
print("Sans 0s:", np.trim_zeros(xpoints))#trim_zeros 函数可以去掉一维数组中开头和末尾为0的元素

运行结果如下:

Intersection points: [403.82451866 354.50031142 289.94335284 213.44012464 185.82581983
  97.72837787  51.03724424  18.28586259]
Real number: [ True  True  True  True  True  True  True  True]
Real intersection points: [403.82451866 354.50031142 289.94335284 213.44012464 185.82581983
  97.72837787  51.03724424  18.28586259]
Sans 0s: [403.82451866 354.50031142 289.94335284 213.44012464 185.82581983
  97.72837787  51.03724424  18.28586259]

完整代码如下:

import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt

def datestr2num(s): #定义一个函数
    return datetime.strptime(s.decode('ascii'),"%Y-%m-%d").date().weekday()

opens,highs,lows,closes,vols = np.loadtxt('data036.csv',delimiter=',', usecols=(2,3,4,5,6),converters={1:datestr2num},unpack=True)
#开盘价、最高价、最低价、收盘价、成交量数组。
N=8
weights = np.hanning(N)  #调用hanning 函数计算权重,生成一个长度为8的窗口
print("Weights:", weights)
closes_returns = np.diff(closes) / closes[ : -1] #计算收盘价相邻差价
smooth_closes = np.convolve(weights/weights.sum(), closes_returns) [N-1:-N+1]#利用权重,计算数据平滑
opens_returns = np.diff(opens) / opens[ : -1]    #计算开盘价相邻差价
smooth_opens = np.convolve(weights/weights.sum(), opens_returns) [N-1:-N+1]
t = np.arange(N - 1, len(closes_returns))

#多项式拟合平滑后的数据
t = np.arange(N - 1, len(closes_returns))
poly_closes = np.polyfit(t, smooth_closes,N) #求收盘价的多项式
poly_opens = np.polyfit(t, smooth_opens, N)  #求收盘价的多项式
poly_sub = np.polysub(poly_closes, poly_opens)  #polysub函数对多项式作差,
xpoints = np.roots(poly_sub)    #对所得的多项式函数求根
print("Intersection points:", xpoints)

reals = np.isreal(xpoints)  #用isreal 函数来判断数组元素是否为实数
print ("Real number:", reals)
xpoints = np.select([reals], [xpoints]) #select 函数根据一组给定条件,
xpoints = xpoints.real # 从一组元素中挑选出符合条件的元素并返回数组
print("Real intersection points:", xpoints)
print("Sans 0s:", np.trim_zeros(xpoints))#trim_zeros 函数可以去掉一维数组中开头和末尾为0的元素

plt.plot(t, closes_returns[N-1:], lw=1.0)
plt.plot(t, smooth_closes, lw=2.0)
plt.plot(t, opens_returns[N-1:], lw=1.0)
plt.plot(t, smooth_opens, lw=2.0)
plt.show()

Python数据分析--Numpy常用函数介绍(6)--Numpy中与股票成交量有关的计算

 

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python数据分析–Numpy常用函数介绍(6)–Numpy中与股票成交量有关的计算 - Python技术站

(0)
上一篇 2023年4月2日
下一篇 2023年4月2日

相关文章

  • python入门基础(10)–类的创建、使用和继承

    在面向对象编程中,先编写表示现实世界中的事物和情景的类,并基于这些类来创建对象。基于类创建对象时,每个对象都自动具备类的通用行为,同时可根据需要赋予每个对象独特的个性,在实例中存储特定信息及操作根据类来创建对象被称为实例化类,也可以用来扩展既有类的功能,让相似的类能够高效地共享代码 一、创建和使用类、实例 编写一个学生的类,含有名字、年龄、年级、家乡等信息,…

    2023年4月2日
    00
  • python数据可视化-matplotlib入门(4)-条形图和直方图

    摘要:先介绍条形图直方图,然后用随机数生成一系列数据,保存到列表中,最后统计出相关随机数据的概率并展示     前述介绍了由点进行划线形成的拆线图和散点形成的曲线图,连点成线,主要用到了matplotlib中的plot()和scatter()这个函数,但在实际生活工作中,不仅有折线图,还经常会出现月份经济数据对比图,身高统计图等,制成图表就很容易对比看出差异…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(7)–Numpy中矩阵和通用函数

    在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat 、 matrix 以及 bmat 函数来创建矩阵。 一、创建矩阵 mat 函数创建矩阵时,若输入已为 matrix 或 ndarray 对象,则不会为它们创建副本。 因此,调用 mat() 函数和调用 matrix(data, copy=F…

    2023年4月2日
    00
  • python入门基础(8)–python中的嵌套

    嵌套:将一系列字典存储在列表中,或将列表作为值存储在字典中,这称为嵌套。既可以在列表中嵌套字典,也可以在字典中嵌套列表,甚至在字典中嵌套字典。 一、列表中嵌套字典  1)一般创建方式: student_A ={‘name’:’Allen’,’age’:’14’,’grade’:’8′} student_B ={‘name’:’Jack’,’age’:’12’…

    2023年4月2日
    00
  • python入门基础(3) 字符串、列表访问

    一、列表 列表由一系列按特定顺序排列的多个元素或空元素组成,包含字母表中所有字母、数字0~9或所有家庭成员姓名的列表;列表中各元素间可以没有任何关系;实际使用过程中,通常给列表指定一个表示复数的名称,如names,cars,letters,dog_names。 列表大多数是是动态的,列表创建后,将随着程序的运行,列表的长度,数值(或字符串值)都会不断变化,需…

    2023年4月2日
    00
  • python入门基础(1)—安装

      说明:0基础,那就先练习python语言基础知识,等基础知识牢固了,再对各开发平台分别进行介绍。这里只介绍两个简单而又容易搭建开发平台Anaconda和pycharm   Anaconda是一个开源的Python发行版本,包括Conda、Python以及一堆工具包,比如:numpy、pandas等等180多个科学包及其依赖项,因后期涉及数据处理及深度学习…

    2023年4月2日
    00
  • python数据可视化-matplotlib入门(5)-饼图和堆叠图

    饼图常用于统计学模块,画饼图用到的方法为:pie( ) 一、pie()函数用来绘制饼图 pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, c…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(2)

    摘要:本篇我们将以分析历史股价为例,介绍怎样从文件中载入数据,以及怎样使用NumPy的基本数学和统计分析函数、学习读写文件的方法,并尝试函数式编程和NumPy线性代数运算,来学习NumPy的常用函数。 一、文件读入 :读写文件是数据分析的一项基本技能 CSV(Comma-Separated Value,逗号分隔值)格式是一种常见的文件格式。通常,数据库的转存…

    2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部