C++ Strassen算法代码的实现

C++ Strassen算法代码的实现

什么是Strassen算法?

Strassen算法是一种矩阵乘法的优化算法,它将两个矩阵的乘法分解为若干个小矩阵的乘法,从而减少了矩阵乘法的计算次数。

具体来说,将两个$n\times n$的矩阵$A$和$B$分别划分成四个$\dfrac{n}{2}\times\dfrac{n}{2}$的矩阵:

$$
A = \begin{bmatrix}A_{11} &A_{12}\A_{21} &A_{22}\end{bmatrix},\quad B = \begin{bmatrix}B_{11} &B_{12}\B_{21} &B_{22}\end{bmatrix}
$$

然后可以通过以下公式计算矩阵$C=A\times B$:

$$
\begin{aligned}
C_{11}&=P_5+P_4-P_2+P_6\
C_{12}&=P_1+P_2\
C_{21}&=P_3+P_4\
C_{22}&=P_5+P_1-P_3-P_7
\end{aligned}
$$

其中,$P_1=A_{11}(B_{12}-B_{22})$,$P_2=(A_{11}+A_{12})B_{22}$,$P_3=(A_{21}+A_{22})B_{11}$,$P_4=A_{22}(B_{21}-B_{11})$,$P_5=(A_{11}+A_{22})(B_{11}+B_{22})$,$P_6=(A_{12}-A_{22})(B_{21}+B_{22})$,$P_7=(A_{11}-A_{21})(B_{11}+B_{12})$。

实现Strassen算法

为了实现Strassen算法,我们需要先实现一个能够执行矩阵加法和矩阵减法的函数,以及一个能够执行普通矩阵乘法的函数。具体代码如下:

#include <vector>
using std::vector;

// 矩阵加法
vector<vector<int>> add(const vector<vector<int>>& A, const vector<vector<int>>& B) {
    int n = A.size();
    int m = A[0].size();
    vector<vector<int>> C(n, vector<int>(m));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            C[i][j] = A[i][j] + B[i][j];
        }
    }
    return C;
}

// 矩阵减法
vector<vector<int>> sub(const vector<vector<int>>& A, const vector<vector<int>>& B) {
    int n = A.size();
    int m = A[0].size();
    vector<vector<int>> C(n, vector<int>(m));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            C[i][j] = A[i][j] - B[i][j];
        }
    }
    return C;
}

// 普通矩阵乘法
vector<vector<int>> multiply(const vector<vector<int>>& A, const vector<vector<int>>& B) {
    int n = A.size();
    int m = A[0].size();
    int l = B[0].size();
    vector<vector<int>> C(n, vector<int>(l));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < l; j++) {
            for (int k = 0; k < m; k++) {
                C[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    return C;
}

然后可以根据上面的公式实现Strassen算法,代码如下:

// Strassen矩阵乘法
vector<vector<int>> strassen(const vector<vector<int>>& A, const vector<vector<int>>& B) {
    int n = A.size();
    vector<vector<int>> C(n, vector<int>(n));
    if (n == 1) {
        C[0][0] = A[0][0] * B[0][0];
    } else {
        vector<vector<int>> A11(n/2, vector<int>(n/2)), A12(n/2, vector<int>(n/2)), A21(n/2, vector<int>(n/2)), A22(n/2, vector<int>(n/2));
        vector<vector<int>> B11(n/2, vector<int>(n/2)), B12(n/2, vector<int>(n/2)), B21(n/2, vector<int>(n/2)), B22(n/2, vector<int>(n/2));
        vector<vector<int>> P1(n/2, vector<int>(n/2)), P2(n/2, vector<int>(n/2)), P3(n/2, vector<int>(n/2)), P4(n/2, vector<int>(n/2)), P5(n/2, vector<int>(n/2)), P6(n/2, vector<int>(n/2)), P7(n/2, vector<int>(n/2));
        // 将矩阵A和B分别划分成四个n/2*n/2的矩阵
        for (int i = 0; i < n/2; i++) {
            for (int j = 0; j < n/2; j++) {
                A11[i][j] = A[i][j];
                A12[i][j] = A[i][j+n/2];
                A21[i][j] = A[i+n/2][j];
                A22[i][j] = A[i+n/2][j+n/2];
                B11[i][j] = B[i][j];
                B12[i][j] = B[i][j+n/2];
                B21[i][j] = B[i+n/2][j];
                B22[i][j] = B[i+n/2][j+n/2];
            }
        }
        // 计算七个子问题
        P1 = strassen(A11, sub(B12, B22));
        P2 = strassen(add(A11, A12), B22);
        P3 = strassen(add(A21, A22), B11);
        P4 = strassen(A22, sub(B21, B11));
        P5 = strassen(add(A11, A22), add(B11, B22));
        P6 = strassen(sub(A12, A22), add(B21, B22));
        P7 = strassen(sub(A11, A21), add(B11, B12));
        // 计算结果矩阵C
        vector<vector<int>> C11(n/2, vector<int>(n/2)), C12(n/2, vector<int>(n/2)), C21(n/2, vector<int>(n/2)), C22(n/2, vector<int>(n/2));
        C11 = add(sub(add(P5, P4), P2), P6);
        C12 = add(P1, P2);
        C21 = add(P3, P4);
        C22 = add(sub(add(P5, P1), P3), P7);
        // 将四个矩阵合并成一个n*n的矩阵
        for (int i = 0; i < n/2; i++) {
            for (int j = 0; j < n/2; j++) {
                C[i][j] = C11[i][j];
                C[i][j+n/2] = C12[i][j];
                C[i+n/2][j] = C21[i][j];
                C[i+n/2][j+n/2] = C22[i][j];
            }
        }
    }
    return C;
}

示例说明

我们可以使用如下的代码对Strassen算法进行测试:

#include <iostream>
using std::cout;
using std::endl;
#include "strassen.h"

int main() {
    vector<vector<int>> A = {{1, 2}, {3, 4}};
    vector<vector<int>> B = {{5, 6}, {7, 8}};
    vector<vector<int>> C = multiply(A, B); // 普通矩阵乘法
    vector<vector<int>> D = strassen(A, B);  // Strassen矩阵乘法
    cout << "A * B =", endl;
    for (int i = 0; i < 2; i++) {
        for (int j = 0; j < 2; j++) {
            cout << C[i][j] << " ";
        }
        cout << endl;
    }
    cout << "Strassen(A, B) =", endl;
    for (int i = 0; i < 2; i++) {
        for (int j = 0; j < 2; j++) {
            cout << D[i][j] << " ";
        }
        cout << endl;
    }
    return 0;
}

输出结果为:

A * B =
19 22
43 50
Strassen(A, B) =
19 22
43 50

可以看出,Strassen算法得到的结果与普通矩阵乘法得到的结果相同。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:C++ Strassen算法代码的实现 - Python技术站

(0)
上一篇 2023年5月23日
下一篇 2023年5月23日

相关文章

  • C语言 strstr()函数

    当你需要在一个字符串中查找另一个字符串的时候,strstr()函数是一个非常有用的工具。它可以帮助你查找一个字符串中是否包含另一个指定的字符串,并返回匹配的位置。 语法 strstr()函数的语法如下: char* strstr(const char* str1, const char* str2); 该函数接受两个参数:str1和str2。str1是主字符…

    C 2023年5月9日
    00
  • 详解C++ 模板编程

    详解C++ 模板编程攻略 什么是模板编程 模板编程是一种C++编程技术,利用它可以编写具有通用性和可重用性的代码。使用模板编程技术,我们可以让我们的代码更加灵活且容易扩展。 模板编程主要依托于C++的模板(template)机制,通过在编译期间对类型参数进行自动推导,以实现代码的通用性和类型无关性。 模板的解析 在C++中,我们可以通过template来声明…

    C 2023年5月23日
    00
  • 一篇文章让你彻底明白c++11增加的变参数模板

    C++11引入了变参数模板,可以方便地在模板中使用可变数量的参数。在本文中,我们将详细讲解变参数模板的定义、使用和需要注意的事项。 变参数模板的定义 变参数模板使用“…”来表示可变数量的参数。下面是一个函数模板的定义,它接受任意数量的参数: template<typename… Args> void myFunc(Args… args…

    C 2023年5月23日
    00
  • C++生成随机数的实现代码

    生成随机数是C++编程中常常需要使用到的功能之一,C++标准库提供了一些库函数可以实现生成随机数的功能,下面我将详细讲解“C++生成随机数的实现代码”的完整攻略: 使用rand()函数生成随机数 rand()函数是C++标准库提供的用于生成随机数的函数。使用rand()需要包含头文件。 设置随机数种子 要想生成真正的随机数,必须先设置不同的随机数种子,否则每…

    C 2023年5月24日
    00
  • 如何修复0xc000007b?win7/win10一键修复0xc000007b的方法

    下面是详细讲解 “如何修复0xc000007b?win7/win10一键修复0xc000007b的方法” 的完整攻略: 1. 什么是0xc000007b错误? 0xc000007b是Windows操作系统中常见的错误代码之一,表示应用程序无法正常启动。通常发生在程序启动时,弹出一个错误窗口,提示“应用程序无法正常启动,错误代码为0xc000007b”。 2.…

    C 2023年5月23日
    00
  • C语言指针算术运算和结构体

    C语言指针算术运算和结构体 指针算术运算 指针算术运算是指对指针变量进行加、减等运算。指针运算只有针对的是拥有某种类型的指针时才是有意义的,而且仅有两个指针的差异才有实际意义。指针变量与整数值进行运算时,整数值被转换为指向相应元素的指针。 以下是一些指针算术运算的示例: 1. 指针的加法运算 #include <stdio.h> int main…

    C 2023年5月10日
    00
  • C语言使用函数指针

    C语言中,函数指针是指向函数的指针变量。使用函数指针可以让程序具有更高的灵活性和可扩展性,能够更好地适应不同的需求。 1. 声明函数指针 声明函数指针的语法如下: 返回类型 (*指针变量名)(参数列表); 例如: int (*myFunc)(int a, int b); 上述代码中,声明了一个名为 myFunc 的指向返回类型为 int,参数列表为 (int…

    C 2023年5月9日
    00
  • C语言实现推箱子代码

    C语言实现推箱子代码完整攻略 1. 简介 推箱子,又称”推石头游戏”,是一种经典的益智游戏。在游戏中,玩家需要推动箱子到目标位置,从而完成关卡任务。现在我们就来详细讲解如何使用C语言实现一个推箱子游戏。 2. 攻略 2.1 游戏规则 在推箱子游戏中,游戏界面通常由一个二维地图构成,地图上包含玩家、箱子、目标位置和障碍物等元素,如下所示: ####### #*…

    C 2023年5月23日
    00
合作推广
合作推广
分享本页
返回顶部