1、AlexNet网络模型,pytorch1.1.0 实现
注意:AlexNet,in_img_size >=64 输入图片矩阵的大小要大于等于64
# coding:utf-8 import torch.nn as nn import torch class alex_net(nn.Module): def __init__(self,in_img_rgb=3,in_img_size=64,out_class=1000,in_fc_size=9216): super(alex_net,self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=in_img_rgb, out_channels=in_img_size, kernel_size=11, stride=4, padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=in_img_size,out_channels=192,kernel_size=5,stride=1,padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=192,out_channels=384,kernel_size=3,stride=1,padding=1), nn.ReLU() ) self.conv4 = nn.Sequential( nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,stride=1,padding=1), nn.ReLU() ) self.conv5 = nn.Sequential( nn.Conv2d(in_channels=256,out_channels=256,kernel_size=3,stride=1,padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) self.fc1 = nn.Sequential( nn.Dropout(p=0.5), nn.Linear(in_features=in_fc_size, out_features=4096, bias=True), nn.ReLU(), nn.Dropout(p=0.5) ) self.fc2 = nn.Sequential( nn.Linear(in_features=4096, out_features=4096, bias=True), nn.ReLU() ) self.fc3 = nn.Sequential( nn.Linear(in_features=4096, out_features=out_class, bias=True) ) self.conv_list = [self.conv1,self.conv2,self.conv3,self.conv4,self.conv5] self.fc_list = [self.fc1,self.fc2,self.fc3] def forward(self, x): for conv in self.conv_list: x = conv(x) fc = x.view(x.size(0), -1) # 查看全连接层的参数:in_fc_size 的值 # print("alexnet_model_fc:",fc.size(1)) for fc_item in self.fc_list: fc = fc_item(fc) return fc # 检测 gpu是否可用 CUDA = torch.cuda.is_available() print(CUDA) if CUDA: alex_net_model = alex_net(in_img_rgb=1, in_img_size=80, out_class=13,in_fc_size=256).cuda() else: alex_net_model = alex_net(in_img_rgb=1, in_img_size=80, out_class=13,in_fc_size=256) print(alex_net_model) # 优化方法 optimizer = torch.optim.Adam(alex_net_model.parameters()) # 损失函数 loss_func = nn.MultiLabelSoftMarginLoss()#nn.CrossEntropyLoss() # 批次训练分割数据集 def batch_training_data(x_train,y_train,batch_size,i): n = len(x_train) left_limit = batch_size*i right_limit = left_limit+batch_size if n>=right_limit: return x_train[left_limit:right_limit,:,:,:],y_train[left_limit:right_limit,:] else: return x_train[left_limit:, :, :, :], y_train[left_limit:, :]
2、训练网络,自定义数据集
# coding:utf-8 import time import os import torch import numpy as np from data_processing import get_DS # from CNN_nework_model import cnn_face_discern_model from torch.autograd import Variable from alexnet_model import optimizer, alex_net_model, loss_func, batch_training_data,CUDA from sklearn.metrics import accuracy_score os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' st = time.time() # 获取训练集与测试集以 8:2 分割 img_resize = 80 x_,y_,y_true,label = get_DS(img_resize) label_number = len(label) x_train,y_train = x_[:960,:,:,:].reshape((960,1,img_resize,img_resize)),y_[:960,:] x_test,y_test = x_[1250:,:,:,:].reshape((50,1,img_resize,img_resize)),y_[1250:,:] y_test_label = y_true[1250:] print(time.time() - st) print(x_train.shape,x_test.shape) batch_size = 128 n = int(len(x_train)/batch_size)+1 for epoch in range(100): global loss for batch in range(n): x_training,y_training = batch_training_data(x_train,y_train,batch_size,batch) batch_x,batch_y = Variable(torch.from_numpy(x_training)).float(),Variable(torch.from_numpy(y_training)).float() if CUDA: batch_x=batch_x.cuda() batch_y=batch_y.cuda() out = alex_net_model(batch_x) loss = loss_func(out, batch_y) optimizer.zero_grad() loss.backward() optimizer.step() # 测试精准度 if epoch%5==0: global x_test_tst if CUDA: x_test_tst = Variable(torch.from_numpy(x_test)).float().cuda() y_pred = alex_net_model(x_test_tst) y_predict = np.argmax(y_pred.cpu().data.numpy(),axis=1) # print(y_test_label,"\n",y_predict) acc = accuracy_score(y_test_label,y_predict) print("loss={} aucc={}".format(loss.cpu().data.numpy(),acc)) # 保存模型 # torch.save(model.state_dict(),'save_torch_model/face_image_recognition_model.pkl') # 导入模型 # model.load_state_dict(torch.load('params.pkl')) # 两种保存模型的方法 # https://blog.csdn.net/u012436149/article/details/68948816/
3、训练输出日志
True alex_net( (conv1): Sequential( (0): Conv2d(1, 80, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)) (1): ReLU() (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) (conv2): Sequential( (0): Conv2d(80, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)) (1): ReLU() (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) (conv3): Sequential( (0): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() ) (conv4): Sequential( (0): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() ) (conv5): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU() (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False) ) (fc1): Sequential( (0): Dropout(p=0.5) (1): Linear(in_features=256, out_features=4096, bias=True) (2): ReLU() (3): Dropout(p=0.5) ) (fc2): Sequential( (0): Linear(in_features=4096, out_features=4096, bias=True) (1): ReLU() ) (fc3): Sequential( (0): Linear(in_features=4096, out_features=13, bias=True) ) ) 0.8886234760284424 (960, 1, 80, 80) (50, 1, 80, 80) loss=0.3137727379798889 aucc=0.02 loss=0.2404210865497589 aucc=0.08 loss=0.18966872990131378 aucc=0.16 loss=0.10794774442911148 aucc=0.42 loss=0.13021017611026764 aucc=0.78 loss=0.012793565168976784 aucc=0.84 loss=0.01140566635876894 aucc=0.9 loss=0.0007940902141854167 aucc=0.88 loss=0.0029846576508134604 aucc=0.92 loss=0.007708669640123844 aucc=0.92 loss=0.00024750467855483294 aucc=0.96 loss=0.0004877769388258457 aucc=0.94 loss=0.009000929072499275 aucc=0.92 loss=0.005286205094307661 aucc=0.86 loss=5.5937391152838245e-05 aucc=0.92 loss=0.002650830429047346 aucc=0.92 loss=0.003015386639162898 aucc=0.94 loss=8.692526171216741e-05 aucc=0.94 loss=0.0021193104330450296 aucc=0.96 loss=7.769006333546713e-05 aucc=0.94
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch 实现 AlexNet 网络模型训练自定义图片分类 - Python技术站