循环神经网络
-
Recurrent Neural Network系列1–RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明。谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS 。 Recurrent Neural Networks(RNNS) ,循环神经网络…
-
循环神经网络——序列模型
文章目录 循环神经网络 Recurrent Neural Networks 前向传播 代价函数 反向传播 门控循环单元 GRU (gated recurrent units) 长短时记忆单元 LSTM (long short time memory) 双向RNN (bidirectional RNN) 深层RNN 循环神经网络 Recurrent Neura…
-
拓端tecdat|R语言深度学习Keras循环神经网络(RNN)模型预测多输出变量时间序列
原文链接:http://tecdat.cn/?p=23902 原文出处:拓端数据部落公众号 递归神经网络被用来分析序列数据。它在隐藏单元之间建立递归连接,并在学习序列后预测输出。在本教程中,我们将简要地学习如何用R中的Keras RNN模型来拟合和预测多输出的序列数据,你也可以对时间序列数据应用同样的方法。我们将使用Keras R接口在R中实现神经网络: …
-
深度学习2.0-37.循环神经网络层
文章目录 weight sharing-用一个线性层处理单词(共享)解决参数量过大的问题 Consistent memory-解决语义相关性问题 Gradient-可导 weight sharing-用一个线性层处理单词(共享)解决参数量过大的问题 Consistent memory-解决语义相关性问题 需要用全局的视角来处理语义信息,来解决语义相关性问题 …
-
循环神经网络(RNN)的解释说明及其梯度爆炸或消失的tricks
文章目录 一、核心思想 二、结构 三、为什么需要反馈? 四、RNN的问题 五、解决方法呢? 六、总结 参考文献 一、核心思想 区别于普通神经网络,循环神经网络Recurrent neural network (RNN)不仅仅单独的取处理一个个的输入,前一个输入和后一个输入不是完全没有关系的。在某些任务中,需要能够更好的处理序列的信息,即前面的输入和后面的输入…
-
灰灰深入浅出讲解循环神经网络(RNN)
我来钱庙复知世依,似我心苦难归久,相须莱共游来愁报远。近王只内蓉者征衣同处,规廷去岂无知草木飘。 你可能以为上面的诗句是某个大诗人所作,事实上上面所有的内容都是循环神经网络写的,是不是感觉很神奇呢?其实这里面的原理非常简单,只需要对循环神经网络有个清楚的理解,那么就能够实现上面的效果,在读完本篇文章之后,希望大家都能够学会如何使用循环神经网络来创作文本。 本…
-
深度学习之CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解
背景 我们知道,目前,深度学习十分热门,深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 从广义上来说,NN(或是更美的DNN)可以认为包含了CNN、RNN这些具体的…
-
RNN循环神经网络里的BPTT算法
这两天对RNN循环神经网络进行了学习,由一无所知到现在对什么是RNN以及它的前向传播和反向传播有了认识,尤其是BPTT算法的推导有些繁琐,但是推过一次后,对RNN反向传播求梯度的过程有了更清晰的认识。 下面是朴素的RNN循环神经网络图。(图1) 我在写博客前,自己先手写了一份推导过程。(图2) 为何BPTT更难? 因为多了状态之间的传递(即隐层单元之间的“交…
-
PyTorch动态神经网络(六)——循环神经网络RNN
1、什么是循环神经网络RNN RNN是在有序的数据上进行学习的。 对于含有关联关系的数据,普通的神经网络并不能很好的体现或者是发现利用数据之间的关联关系。于是也就有了循环神经网络,它很善于分析内部有关联关系的序列数据,在单独分析数据的同时,也不忘考虑数据间的关系。 假如我们在分析Data0、Data1、Data2、Data3这些数据时,对于每个数据都经过相同…
-
文本预处理,语言模型,循环神经网络
1.文本预处理文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤: 读入文本 分词 建立字典,将每个词映射到一个唯一的索引(index) 将文本从词的序列转换为索引的序列,方便输入模型 2语言模型一段自然语言文本可以看作是一个离散时间序列,给定一个长度为TTT的词的序列w1,w2,…,wTw_1…