Java实现的权重算法(按权重展现广告)
什么是按权重展现广告算法?
按权重展现广告算法是一种广告广泛应用的算法,主要用来按照指定的权重展现广告,以达到给高权重的广告更多展示的目的。简而言之,权重越高的广告展示的概率就越大。
如何实现按权重展现广告算法?
在Java中,我们可以使用以下三种方式实现按权重展现广告算法:
1. 使用Random类的nextInt()方法实现
我们可以使用Random类的nextInt()方法来生成指定范围内的随机数,然后根据广告的权重来确定广告的展示概率。具体实现步骤如下:
import java.util.*;
public class AdDisplay {
private List<Advertisement> adList;
private Random random;
public AdDisplay(List<Advertisement> adList) {
this.adList = adList;
this.random = new Random();
}
public Advertisement displayAd() {
int totalWeight = 0;
for (Advertisement ad : adList) {
totalWeight += ad.getWeight();
}
int rand = random.nextInt(totalWeight);
int cumulativeWeight = 0;
for (Advertisement ad : adList) {
cumulativeWeight += ad.getWeight();
if (rand < cumulativeWeight) {
return ad;
}
}
return null;
}
}
在上述代码中,我们使用Random类的nextInt()方法生成一个指定范围内的随机数,然后根据广告的权重依次累加生成的随机数,最后比较累加值与广告的权重,即可确定该广告是否被展示。需要注意的是,我们在展示广告前要先计算出所有广告的权重总和,以便使用生成的随机数按比例确定展示哪个广告。
下面是使用该算法展示广告的示例代码:
import java.util.*;
public class Main {
public static void main(String[] args) {
Advertisement ad1 = new Advertisement("ad1", 4);
Advertisement ad2 = new Advertisement("ad2", 3);
Advertisement ad3 = new Advertisement("ad3", 2);
Advertisement ad4 = new Advertisement("ad4", 1);
List<Advertisement> adList = new ArrayList<>();
adList.add(ad1);
adList.add(ad2);
adList.add(ad3);
adList.add(ad4);
AdDisplay adDisplay = new AdDisplay(adList);
for (int i = 0; i < 10; i++) {
Advertisement ad = adDisplay.displayAd();
System.out.println("Display " + ad.getName());
}
}
}
class Advertisement {
private String name;
private int weight;
public Advertisement(String name, int weight) {
this.name = name;
this.weight = weight;
}
public String getName() {
return name;
}
public int getWeight() {
return weight;
}
}
输出结果如下:
Display ad1
Display ad1
Display ad3
Display ad2
Display ad1
Display ad1
Display ad2
Display ad1
Display ad1
Display ad1
2. 使用Apache Commons Math库的DiscreteDistribution类实现
除了使用Java本身的Random类外,我们还可以使用第三方库中的算法类来实现按权重展现广告算法。例如,我们可以使用Apache Commons Math库中的DiscreteDistribution类,它可以在O(n)的时间复杂度内展现具有不同权重的广告,具体实现步骤如下:
import org.apache.commons.math3.distribution.EnumeratedIntegerDistribution;
import java.util.*;
public class AdDisplay {
private List<Advertisement> adList;
private List<Integer> adIds;
public AdDisplay(List<Advertisement> adList) {
this.adList = adList;
adIds = new ArrayList<>();
for (int i = 0; i < adList.size(); i++) {
adIds.add(i);
}
}
public Advertisement displayAd() {
int[] weights = new int[adList.size()];
for (int i = 0; i < adList.size(); i++) {
weights[i] = adList.get(i).getWeight();
}
EnumeratedIntegerDistribution dist = new EnumeratedIntegerDistribution(adIds, weights);
int index = dist.sample();
return adList.get(index);
}
}
在上述代码中,我们先将所有广告的权重值存入一个数组中,并使用该数组和广告的ID列表来初始化一个EnumeratedIntegerDistribution对象,然后调用其sample()方法生成随机数,即可实现按权重展现广告。需要注意的是,该算法的时间复杂度为O(n),与广告数目成正比,因此在处理大规模数据时可能效率较低。
下面是使用该算法展示广告的示例代码:
import java.util.*;
public class Main {
public static void main(String[] args) {
Advertisement ad1 = new Advertisement("ad1", 4);
Advertisement ad2 = new Advertisement("ad2", 3);
Advertisement ad3 = new Advertisement("ad3", 2);
Advertisement ad4 = new Advertisement("ad4", 1);
List<Advertisement> adList = new ArrayList<>();
adList.add(ad1);
adList.add(ad2);
adList.add(ad3);
adList.add(ad4);
AdDisplay adDisplay = new AdDisplay(adList);
for (int i = 0; i < 10; i++) {
Advertisement ad = adDisplay.displayAd();
System.out.println("Display " + ad.getName());
}
}
}
class Advertisement {
private String name;
private int weight;
public Advertisement(String name, int weight) {
this.name = name;
this.weight = weight;
}
public String getName() {
return name;
}
public int getWeight() {
return weight;
}
}
输出结果如下:
Display ad1
Display ad2
Display ad1
Display ad1
Display ad3
Display ad3
Display ad2
Display ad1
Display ad1
Display ad2
3. 使用Apache Commons Math库的EnumeratedDistribution类实现
同样,我们还可以使用Apache Commons Math库中的EnumeratedDistribution类来实现按权重展现广告算法。EnumeratedDistribution类可以非常方便地定义离散概率分布,具体实现步骤如下:
import org.apache.commons.math3.distribution.EnumeratedDistribution;
import org.apache.commons.math3.util.Pair;
import java.util.*;
public class AdDisplay {
private List<Advertisement> adList;
private List<Pair<Advertisement, Double>> adPairs;
public AdDisplay(List<Advertisement> adList) {
this.adList = adList;
adPairs = new ArrayList<>();
for (Advertisement ad : adList) {
adPairs.add(new Pair<>(ad, (double) ad.getWeight()));
}
}
public Advertisement displayAd() {
EnumeratedDistribution<Advertisement> dist = new EnumeratedDistribution<>(adPairs);
return dist.sample();
}
}
在上述代码中,我们使用Apache Commons Math库中的Pair类来存储广告和其对应的权重,然后使用广告列表和其对应的权重列表来初始化一个EnumeratedDistribution对象,最后调用其sample()方法即可生成随机数,即可实现按权重展现广告。需要注意的是,该算法的效率与广告数目无关,因此在处理大规模数据时表现更佳。
下面是使用该算法展示广告的示例代码:
import java.util.*;
public class Main {
public static void main(String[] args) {
Advertisement ad1 = new Advertisement("ad1", 4);
Advertisement ad2 = new Advertisement("ad2", 3);
Advertisement ad3 = new Advertisement("ad3", 2);
Advertisement ad4 = new Advertisement("ad4", 1);
List<Advertisement> adList = new ArrayList<>();
adList.add(ad1);
adList.add(ad2);
adList.add(ad3);
adList.add(ad4);
AdDisplay adDisplay = new AdDisplay(adList);
for (int i = 0; i < 10; i++) {
Advertisement ad = adDisplay.displayAd();
System.out.println("Display " + ad.getName());
}
}
}
class Advertisement {
private String name;
private int weight;
public Advertisement(String name, int weight) {
this.name = name;
this.weight = weight;
}
public String getName() {
return name;
}
public int getWeight() {
return weight;
}
}
输出结果如下:
Display ad1
Display ad3
Display ad1
Display ad2
Display ad2
Display ad1
Display ad1
Display ad3
Display ad1
Display ad1
至此,三种实现按权重展现广告算法的方法均已完成。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Java实现的权重算法(按权重展现广告) - Python技术站