详细介绍pandas的DataFrame的append方法使用

当我们在使用 pandas 来处理数据时,DataFrame 是我们使用最频繁的数据结构之一。DataFrame 中的数据以二维表格的形式出现,其中每行代表一个数据样本,每列代表一个特征或变量。

在 pandas 的 DataFrame 中,我们可以使用 append 方法来合并两个 DataFrame。这个方法返回的是一个新的 DataFrame,原始的两个 DataFrame 不会被修改。

下面详细介绍 append 方法的用法。

基本用法

可以使用如下的方法调用 append

df1.append(df2)

其中 df1df2 是两个要合并的 DataFrame。默认情况下,append 沿着 DataFrame 的行的方向进行合并,即将 df2 添加到 df1 的下面。

下面的示例说明了这个基本用法:

import pandas as pd

# 创建两个 DataFrame
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']})

# 合并两个 DataFrame
combined_df = df1.append(df2)

print(combined_df)

执行以上代码,输出的结果如下:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
0  A4  B4  C4  D4
1  A5  B5  C5  D5
2  A6  B6  C6  D6
3  A7  B7  C7  D7

从上述输出结果可以看出,append 方法将 df2 添加到了 df1 的下面,形成了一个新的 DataFrame。

需要注意,append 方法并不会修改原始的两个 DataFrame,而是返回一个新的 DataFrame。因此,在使用 append 方法时,一定要将返回值赋值给某个变量。

指定参数

除了默认的行方向合并外,append 方法还可以指定一些参数。

1. 指定合并的列方向

除了默认的行方向合并以外,我们还可以指定通过哪一个轴来合并 DataFrame。可以通过设置参数 axis 来实现:

df1.append(df2, axis=1)

这样就可以将 df2 添加到 df1 的右边。

2. 忽略索引

默认情况下,append 方法会将原始 DataFrame 的索引保留在新的 DataFrame 中。可以通过设置参数 ignore_index 来忽略索引:

df1.append(df2, ignore_index=True)

这样就可以重新生成索引了,使其按照顺序从 0 开始。

下面的示例进一步说明了这两个参数的用法:

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3])

df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']}, index=[0, 1, 2, 3])

# 沿着列方向合并,忽略索引
combined_df = df1.append(df2, axis=1, ignore_index=True)

print(combined_df)

执行以上代码,输出结果如下:

    0   1   2   3   4   5   6   7
0  A0  B0  C0  D0  A4  B4  C4  D4
1  A1  B1  C1  D1  A5  B5  C5  D5
2  A2  B2  C2  D2  A6  B6  C6  D6
3  A3  B3  C3  D3  A7  B7  C7  D7

从上述输出结果可以看出,新的 DataFrame 中的索引已经被重新生成了。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详细介绍pandas的DataFrame的append方法使用 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • pandas中DataFrame重置索引的几种方法

    当我们在进行数据分析过程中,经常需要重置DataFrame的索引。下面介绍几种pandas中DataFrame重置索引的常用方法。 方法一:reset_index() reset_index()函数是pandas中常用的方法之一,用于重置DataFrame的索引。 import pandas as pd # 创建示例数据 data = {‘name’: [‘…

    python 2023年5月14日
    00
  • 对Pandas数据框架中的每一行应用函数

    在使用 Pandas 进行数据分析时,操作 DataFrame 中的每一行是一个常见的需求,可以使用 apply() 函数来实现。 apply() 函数可以将一个自定义函数应用到每一行或列上,函数可以是任何可以操作一个 Series 的函数。 具体的操作步骤如下: 定义自定义函数 首先需要定义一个自定义的函数,该函数应该有一个参数并返回一个值。在该函数中,我…

    python-answer 2023年3月27日
    00
  • 在Pandas中把列名转换成行名/索引

    在Pandas中,我们可以使用melt函数进行将列名转换成行名/索引的操作。下面是具体的操作步骤: 读取数据源,将数据源存入DataFrame中 import pandas as pd df = pd.read_csv(‘data.csv’) 使用melt函数,将指定的列转换为行索引,剩余的列成为新的列名和值。 id_vars = [‘col1’] # 指定…

    python-answer 2023年3月27日
    00
  • 在Pandas数据框架中,将列的第一个字母大写

    在Pandas数据框架中,将列的第一个字母大写,可以通过以下步骤实现: 导入 Pandas 模块: pythonimport pandas as pd 创建包含数据的数据框 DataFrame: “`pythondata = {‘name’: [‘tom’, ‘jack’, ‘steve’, ‘ricky’], ‘age’: [28, 34, 29, 42…

    python-answer 2023年3月27日
    00
  • 利用pandas向一个csv文件追加写入数据的实现示例

    向一个已有的 CSV 文件追加数据是一种非常常见的数据处理场景。通过 Python 中的 Pandas 库,可以很容易地实现这个需求。 下面是实现这个需求的步骤: 步骤一:导入 Pandas 库 首先,需要导入 Pandas 库: import pandas as pd 步骤二:读取已有的 CSV 文件 接下来,需要读取已有的 CSV 文件。假设需要追加的 …

    python 2023年5月14日
    00
  • 在Pandas数据框架中分割一列并获得其中的一部分

    在Pandas数据框架中,分割一列并获得其中的一部分可以通过对该列使用字符串切片的方式实现。具体步骤如下: 导入Pandas库并读入数据 import pandas as pd df = pd.read_csv(‘data.csv’) 使用str属性获得要分割的列的字符串方法,进行字符串切片操作,选取出想要的部分 df[‘new_column’] = df[…

    python-answer 2023年3月27日
    00
  • Pandas之Fillna填充缺失数据的方法

    下面是Pandas之Fillna填充缺失数据的方法的完整攻略。 概述 在数据分析和处理中,经常会遇到缺失数据的情况。Pandas提供了很多方法来处理缺失数据,其中之一就是Fillna填充缺失数据的方法。 Fillna方法可以用指定值、前向或后向填充的方法来填充缺失数据,可以适用于Series和DataFrame对象,相对来说比较灵活。 Fillna方法的常用…

    python 2023年5月14日
    00
  • Pandas中Series和DataFrame的索引实现

    下面开始讲解Pandas中Series和DataFrame的索引实现的攻略。 1. 索引简介 在Pandas中,数据结构主要有两种,分别是Series和DataFrame。Series是一维的数组,DataFrame是二维的表格型数据结构。对于这两个数据类型,索引都扮演着非常重要的角色。索引可以帮助我们快速地定位数据,提高数据操作的效率。 在Pandas中,…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部