pandas DataFrame的修改方法(值、列、索引)

下面是关于pandas DataFrame修改方法的完整攻略。

修改值

pandas DataFrame的值可以通过行和列的位置或标签进行修改。下面是一些示例代码:

通过行列位置修改值

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

# 修改第一行第二列的值为10
df.iloc[0, 1] = 10

print(df)

输出结果为:

   A   B  C
0  1  10  7
1  2   5  8
2  3   6  9

通过行列标签修改值

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}, index=['a', 'b', 'c'])

# 修改第一行b列的值为10
df.loc['b', 'B'] = 10

print(df)

输出结果为:

   A   B  C
a  1   4  7
b  2  10  8
c  3   6  9

修改列

pandas DataFrame的列可以通过列标签进行修改。下面是一些示例代码:

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

# 修改B列的名称为D
df = df.rename(columns={'B': 'D'})

# 在末尾新增一列E,并赋值为[10, 11, 12]
df['E'] = [10, 11, 12]

print(df)

输出结果为:

   A  D  C   E
0  1  4  7  10
1  2  5  8  11
2  3  6  9  12

修改索引

pandas DataFrame的索引可以通过索引名称或位置进行修改。下面是一些示例代码:

通过名称修改索引

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['a', 'b', 'c'])

# 修改行索引名称为1、2、3
df.index = ['1', '2', '3']

print(df)

输出结果为:

   A  B
1  1  4
2  2  5
3  3  6

通过位置修改索引

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['a', 'b', 'c'])

# 将第一行的索引修改为1
df.index.values[0] = '1'

print(df)

输出结果为:

   A  B
1  1  4
b  2  5
c  3  6

希望以上内容对你有所帮助,如果还有疑问,请随时提出。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas DataFrame的修改方法(值、列、索引) - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python读取文件夹下的所有文件实例代码

    以下是Python读取文件夹下所有文件的完整攻略,包含两条示例说明: 目录结构 首先,我们需要先了解一下读取文件夹下所有文件的原理。假设我们有一个文件夹,里面包含了多个文件和子文件夹,我们需要遍历这个文件夹,获取它内部所有的文件名。这时候,我们可以使用Python内置的os模块来实现。 基本操作 下面是一个基本的示例代码: import os # 定义文件夹…

    python 2023年5月14日
    00
  • Python实现平行坐标图的绘制(plotly)方式

    平行坐标图是一种常用的多维数据可视化方式,可以用于快速发现有趣的数据模式以及数据的异常值。Python中有许多可用于绘制平行坐标图的工具,其中一种较为流行且易于上手的工具是plotly。下面是一个完整的攻略,用于指导读者如何使用Python的plotly库绘制平行坐标图。 第一步:导入库 在本攻略中,我们将使用Python的plotly库来绘制平行坐标图。在…

    python 2023年6月13日
    00
  • python groupby 函数 as_index详解

    当我们需要对一个 pandas 数据框按其中某个列进行分组,并对分组后的结果进行某些操作时,可以使用 groupby 函数。而在 groupby 函数中,as_index 参数指定分组后的结果是否要以分组列作为索引,以及是否简化结果,实现不同维度的 groupby 操作。本文将详细讲解 as_index 参数的作用和使用方法,以及示例说明。 1. as_in…

    python 2023年5月14日
    00
  • SQL基础教程之行转列Pivot函数

    当我们从数据库中提取数据时,有时数据都显示为一列一列的。但是,我们可能需要将一些列转化为行,这就需要用到Pivot函数。本文主要介绍SQL Server数据库中的Pivot函数的基础用法。 1.什么是Pivot函数 Pivot函数是SQL Server提供的用于转化数据表结构的函数。它可以将一列或多列数据整理成一个新的行列结构的表。 Pivot函数在交叉列和…

    python 2023年6月13日
    00
  • python实现将两个文件夹合并至另一个文件夹(制作数据集)

    我会详细讲解如何通过Python实现将两个文件夹合并至另一个文件夹来制作数据集。下面是完整攻略: 准备工作 确保你的电脑上已经安装好Python环境 创建三个文件夹:folder1、folder2、merged_folder,并将需要合并的文件放置在folder1和folder2中。 实现过程 首先,我们需要导入os模块。该模块提供了访问文件系统的接口,我们…

    python 2023年6月13日
    00
  • 如何通过索引标签在Pandas DataFrame中删除行

    在Pandas DataFrame中,我们可以使用索引标签来删除行。下面是详细的攻略步骤以及带有实例的说明: 1. 查看DataFrame 首先,我们需要查看DataFrame的数据内容。可以使用pandas库中的read_csv()函数读取csv文件,也可以手动创建DataFrame对象。例如,我们可以通过以下代码创建一个简单的DataFrame对象: i…

    python-answer 2023年3月27日
    00
  • Pandas.DataFrame重置Series的索引index(reset_index)

    Pandas是Python中一个非常常用的数据分析库。而DataFrame是Pandas中最常用的数据结构。在进行数据处理时,我们通常需要对数据进行删减、增加或调整等操作,并且有时候我们需要通过DataFrame中的某个Series来进行一些操作,这时候就需要用到Pandas.DataFrame重置Series的索引index(reset_index)。 r…

    python 2023年6月13日
    00
  • 使用Pandas的Series方法绘制图像教程

    下面是使用Pandas的Series方法绘制图像的完整攻略。 第一步:导入Pandas和Matplotlib库 import pandas as pd import matplotlib.pyplot as plt 第二步:创建Series对象 data = pd.Series([1, 3, 5, 7, 9]) 第三步:绘制线形图 data.plot() p…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部