loss是训练集的损失值,val_loss是测试集的损失值
以下是loss与val_loss的变化反映出训练走向的规律总结:
train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的)
train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化)
train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset)
train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;(减少学习率)
train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。(最不好的情况)
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:keras中loss与val_loss的关系 - Python技术站