问题描述
在使用PyTorch编写深度学习代码时,有时候会遇到“NameError: name 'to_device' is not defined”的报错,如下所示:
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
def train(model, optimizer, criterion, train_loader, valid_loader, device, epochs):
model.to(device)
for epoch in range(epochs):
# ...
running_loss = 0.0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
# ...
model = MyModel()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
train(model, optimizer, criterion, train_loader, valid_loader, device=device, epochs=10)
问题分析
报错信息中指出,to_device函数没有被定义,说明出现了python无法找到该函数的情况。这说明有可能是拼写错误或者导入失败,或者根本不存在该函数。
查询PyTorch官方文档,我们可以发现,PyTorch中并没有名为to_device的函数。在这里,我们使用的to函数将Tensor对象从一种设备移动到另一种设备,它的用法为:
tensor.to(device)
解决办法
因此,我们需要将to_device改为to即可解决该错误。
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
def train(model, optimizer, criterion, train_loader, valid_loader, device, epochs):
model.to(device)
for epoch in range(epochs):
# ...
running_loss = 0.0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
# ...
model = MyModel()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
criterion = nn.CrossEntropyLoss()
train(model, optimizer, criterion, train_loader, valid_loader, device=device, epochs=10)
这样,我们就成功解决了to_device函数未定义的问题。
总结
出现“NameError: name 'to_device' is not defined”错误可能是因为代码中使用了错误的函数名或者导入失败。在这里,我们提到了PyTorch中常用的to函数,并给出了to_device报错的解决办法。建议在编写代码时,务必查看官方文档,避免出现类似问题。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch报”NameError: name ‘to_device’ is not defined “的原因以及解决办法 - Python技术站