【可视化大屏教程】用Python开发智慧城市数据分析大屏!

一、开发背景

您好,我是 @马哥python说 ,这是我独立开发的Python可视化大屏,看下演示效果:
截图:大屏

视频演示效果:
https://www.zhihu.com/zvideo/1556218745923821568

这个大屏,是通过pyecharts可视化开发框架实现。

下面详细介绍,这个大屏的实现过程。

二、讲解代码

注:由于我的MySQL数据库环境问题,暂通过模拟假数据,对接可视化代码。

2.1 大标题+背景图

由于pyecharts组件没有专门用作标题的图表,我决定灵活运用Line组件实现大标题。

line3 = (
		Line(init_opts=opts.InitOpts(width="1420px",  # 宽度
		                             height="800px",  # 高度
		                             bg_color={"type": "pattern", "image": JsCode("img"),
		                                       "repeat": "repeat", }))  # 设置背景图片
			.add_xaxis([None])  # 插入空数据
			.add_yaxis("", [None])  # 插入空数据
			.set_global_opts(
			title_opts=opts.TitleOpts(title=v_title,
			                          pos_left='center',
			                          pos_top='1%',
			                          title_textstyle_opts=opts.TextStyleOpts(font_size=45,
			                                                                  font_family='cursive',
			                                                                  color='white',
			                                                                  align='left'),
			                          ),
			yaxis_opts=opts.AxisOpts(is_show=False),  # 不显示y轴
			xaxis_opts=opts.AxisOpts(is_show=False))  # 不显示x轴
	)
# 设置背景图片
line3.add_js_funcs(
	"""
	var img = new Image(); img.src = './static/城市1.jpeg';
	"""
)

这里最关键的逻辑,就是背景图片的处理。我找了一张智慧城市的炫丽背景图片:城市背景图

然后用add_js_funcs代码把此图片设置为整个大屏的背景图。

大标题效果:大标题+背景图

由于背景图片太大(4360x2910),只显示出了上半部分,恰恰是我预期的效果!

2.2 各区县交通事故统计图-系列柱形图

针对城市交通事故统计数据,绘制系列柱形图:

x_data = [str(i) + '月' for i in range(1, 13)]
y1_data = [193, 242, 206, 198, 335, 298, 38, 93, 88, 285, 297, 302]
y2_data = [96, 41, 28, 95, 36, 94, 29, 61, 42, 85, 99, 31]
bar = (
	Bar(init_opts=opts.InitOpts(theme=theme_config, width="750px", height="350px", chart_id='bar_county'))
		.add_xaxis(x_data)
		.add_yaxis("高峰期", y1_data, gap="0%")
		.add_yaxis("非高峰期", y2_data, gap="0%")
		.set_global_opts(title_opts=opts.TitleOpts(title=v_title,
	                                               pos_left='center',
	                                               title_textstyle_opts=opts.TextStyleOpts(color=chart_text_color),
	                                               ),
	                     legend_opts=opts.LegendOpts(pos_right='10%', orient='vertical'),
	                     tooltip_opts=opts.TooltipOpts(
		                     trigger="axis", axis_pointer_type="cross", is_show=True),  # 提示框配置
	                     xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color=chart_text_color), ),
	                     yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(color=chart_text_color), ),
	                     )
)

效果图如下:系列柱形图

这种两两一组的柱形图,在pyecharts中叫做:系列柱形图,Bar with different series gap

2.3 图书馆建设率-水球图

图书馆建设率,采用pyecharts的水球图(动态)展示效果:

data_list = [[23, 0.6328]]
l1 = Liquid(init_opts=opts.InitOpts(theme=theme_config, width="450px", height="350px", chart_id=v_chart_id))
l1.add("完成率", [data_list[0][1]], center=["30%", "50%"], label_opts=opts.LabelOpts(font_size=20, position='inside'))
l1.set_global_opts(title_opts=opts.TitleOpts(title=v_title,
                                             pos_left='15%',
                                             pos_top='15%',
                                             title_textstyle_opts=opts.TextStyleOpts(color=chart_text_color),
                                             ))

效果图如下:(此处是静态截图,其实有动态波纹效果)水球图

2.4 当年城市空气质量aqi指数-面积图

城市空气质量aqi,采用面积图展示:

x_data = [str(i) + '月' for i in range(1, 13)]
y_data = [36.8, 35.2, 36.0, 31.9, 29.5, 14.9, 33.5, 20.8, 37.1, 42.6, 44.9, 53.3]
area_color_js = (  # 设置美观背景色
	"new echarts.graphic.LinearGradient(0, 0, 0, 1, "
	"[{offset: 0, color: '#eb64fb'}, {offset: 1, color: '#3fbbff0d'}], false)"
)

line = (
	Line(init_opts=opts.InitOpts(theme=theme_config, width="450px", height="300px", chart_id='line_aqi'))
		.add_xaxis(xaxis_data=x_data)
		.add_yaxis(
		series_name="增长率",
		y_axis=y_data,
		is_smooth=True,  # 是否平滑
		is_symbol_show=True,
		symbol="circle",
		symbol_size=6,
		linestyle_opts=opts.LineStyleOpts(color="#fff"),
		label_opts=opts.LabelOpts(is_show=True, position="top", color="white"),
		itemstyle_opts=opts.ItemStyleOpts(
			color="red", border_color="#fff", border_width=3
		),
		tooltip_opts=opts.TooltipOpts(is_show=False),
		areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1),
	)
		.set_global_opts(
		title_opts=opts.TitleOpts(
			title=v_title,
			pos_left="center",
			pos_top='9%',
			title_textstyle_opts=opts.TextStyleOpts(color=chart_text_color),
		),
		xaxis_opts=opts.AxisOpts(
			type_="category",
			boundary_gap=False,
			axislabel_opts=opts.LabelOpts(margin=30, color=chart_text_color),
			axisline_opts=opts.AxisLineOpts(is_show=False),
			axistick_opts=opts.AxisTickOpts(
				is_show=True,
				length=25,
				linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
			),
			splitline_opts=opts.SplitLineOpts(
				is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
			),
		),
		yaxis_opts=opts.AxisOpts(
			type_="value",
			position="left",
			axislabel_opts=opts.LabelOpts(margin=20, color=chart_text_color),
			axisline_opts=opts.AxisLineOpts(
				linestyle_opts=opts.LineStyleOpts(width=2, color="#fff")
			),
			axistick_opts=opts.AxisTickOpts(
				is_show=True,
				length=15,
				linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
			),
			splitline_opts=opts.SplitLineOpts(
				is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
			),
		),
		legend_opts=opts.LegendOpts(is_show=True, pos_right='right', pos_top='10%'),
		tooltip_opts=opts.TooltipOpts(
			trigger="axis", axis_pointer_type="cross", is_show=True),  # 提示框配置
	)
)

效果图如下:面积图

2.5 近7年人均生产总值变化图-面积图

与2.4章节逻辑实现相同,替换对应数据即可,不再赘述。

2.6 城市人才占比结构图-柱形图

分别统计该城市的博士人才、硕士人才、本科人才、专科人才、专科以下的占比情况,通过柱形图展示:

x_data = ['博士人才', '硕士人才', '本科人才', '专科人才', '专科以下']
y_data = [0.4, 5.8, 26.4, 29.8, 37.6, ]
# 画柱形图
bar = Bar(
	init_opts=opts.InitOpts(theme=theme_config, width="450px", height="350px", chart_id='bar_talent'))  # 初始化条形图
bar.add_xaxis(x_data)  # 增加x轴数据
bar.add_yaxis("占比", y_data)  # 增加y轴数据
bar.set_series_opts(label_opts=opts.LabelOpts(position="right"))  # Label出现位置
bar.set_global_opts(
	legend_opts=opts.LegendOpts(pos_left='right'),
	title_opts=opts.TitleOpts(title=v_title,
	                          pos_left='center',
	                          title_textstyle_opts=opts.TextStyleOpts(color=chart_text_color),
	                          ),  # 标题
	toolbox_opts=opts.ToolboxOpts(is_show=False),  # 不显示工具箱
	tooltip_opts=opts.TooltipOpts(
		trigger="axis", axis_pointer_type="cross", is_show=True),  # 提示框配置
	xaxis_opts=opts.AxisOpts(name="人才类型",  # x轴名称
	                         axislabel_opts=opts.LabelOpts(rotate=0, color=chart_text_color),
	                         splitline_opts=opts.SplitLineOpts(is_show=False)
	                         ),
	yaxis_opts=opts.AxisOpts(name="百分比",  # y轴名称
	                         axislabel_opts=opts.LabelOpts(rotate=0, color=chart_text_color),  # y轴名称
	                         )
)

效果图如下:柱形图

2.7 城市宣传片视频-大屏左上角位置

难点来了!

pyecharts本身并无播放视频的组件,怎么实现的视频播放呢?

首先,任意开发一个简单的图表,柱形图、折线图、散点图什么都可以,后续把它拖拽到大屏左上角。

最后我会用宣传片视频替换掉这个图表。

2.8 组合以上图表,生成临时大屏

通过pyecharts提供的Page组件,采用DraggablePageLayout的layout方法,组合大屏:

# 绘制:整个页面
page = Page(
	page_title="智慧城市数据可视化分析监控大屏",  # 页面标题
	layout=Page.DraggablePageLayout,  # 采用拖拽方式
)
page.add(
	# 大标题
	make_title(v_title="智慧城市数据可视化分析监控大屏"),
	# 近五年城建重点项目数变化情况
	make_key_project_bar(v_title="近年城建重点项目统计"),
	# 各区县交通事故统计图
	make_county_traffic_bar(v_title="各区县交通事故统计图"),
	# 城市人才占比结构统计图
	make_talent_reversal_bar(v_title="城市人才占比结构统计图"),
	# 近7年人均生产总值变化图
	make_gdp_area_line(v_title="近7年人均生产总值变化图"),
	# 当年城市空气质量aqi变化图
	make_aqi_area_line(v_title="当年城市空气质量aqi变化图"),
	# 教育文化设施数量占比-图书馆
	make_edu_liquid(v_title="图书馆建设率", v_chart_id='liquid_1', ),
)
# 执行完毕后,打开临时html并拖拽,拖拽完点击Save Config,把chart_config.json放到本目录下
page.render('大屏_临时.html')
print('生成完毕:大屏_临时.html')

至此,临时大屏文件已经生成。

下面就开始手动拖拽,拖拽的过程,就不文字阐述了,可点击这个视频,观看拖拽过程:

2.9 生成最终大屏

很关键!!

除了常规的拖拽组合大屏操作外,还记得2.7章节留下的疑问吗?

定义一个存放视频的div,把它存到一个字符串里:

video_new = r"""
 <div id="bar_project" class="chart-container" style="width:450px; height:350px;">
	<video id="videoID" controls="controls" style="width:140%;"> <!--MSK修改视频 -->
	  <source src="./static/城市宣传片.mp4" type="video/mp4"/>
	</video>
	</div>
	<br/>
<!--	<button id="con" onclick="btn()">开始/暂停 </button>-->

<script  type="text/javascript">
	window.onload = function() {
		var local1=document.getElementById('videoID');  //获取,函数执行完成后local内存释放
		local1.autoplay = true; // 自动播放
		local1.loop = true; // 循环播放
		local1.muted=true; // 关闭声音,如果为false,视频无法自动播放
		if(local1.paused){  //判断是否处于暂停状态
			local1.play();  //开启播放
	    }else{
			local1.pause();  //停止播放
	    }
    }
    function btn(){
		var local=document.getElementById('videoID');  //获取,函数执行完成后local内存释放
		if(local.paused){  //判断是否处于暂停状态
			local.play();  //开启播放
	    }else{
			local.pause();  //停止播放
	    }
	}
</script>
"""

注意看这行代码下面这行代码,把mp4视频文件放到static目录下:

<source src="./static/城市宣传片.mp4" type="video/mp4"/>

在临时html里找到左上角图表的代码部分,用正则表达式替换成这个视频的代码:

with open('大屏_临时.html', 'r', encoding='utf8') as f:
	text = f.read()
# 正则表达式替换文本
text2 = re.sub('<div id="bar_project"(.*?)</script>', video_new, text, flags=re.DOTALL)
with open('大屏_临时2.html', 'w', encoding='utf8') as f:
	f.write(text2)
print('已写入:大屏_临时2.html')

最后,再执行常规生成最终大屏的代码:

Page.save_resize_html(
	source="大屏_临时2.html",  # 源html文件
	cfg_file="chart_config.json",  # 配置文件
	dest="大屏_最终.html"  # 目标html文件
)

这样,就完成了把视频布局到大屏里的最终目的!

最后,再看一次大屏演示效果:
https://www.zhihu.com/zvideo/1556218745923821568

2.10 部署到服务器-供外部访问

通过flask框架,将html大屏网页快速部署到服务器:

from flask import Flask, render_template

app = Flask(__name__, template_folder='./', )

# 定义路由及视图函数
@app.route('/')  # 装饰器
def f_index():
	return render_template('大屏_最终.html')

if __name__ == '__main__':
	app.run(host='0.0.0.0', port=7888, debug=True)

需要注意的是,host设置为'0.0.0.0',不要把host设置为'127.0.0.1'或者'localhost',否则只能自己在本地访问,外部用户无法访问。

再多说一句,如果host设置没问题,外部用户仍然无法访问,请查看你的云服务器防火墙配置、端口映射、win出入站访问等安全策略,是否存在问题。

三、在线演示

大屏演示地址:智慧城市数据可视化分析监控大屏

我的服务器是乞丐版的,带宽有限,左上角视频播放会卡顿,大家悠着点访问~~

四、更多大屏

更多大屏源码:这里-> @马哥python说


推荐阅读:马哥python说:【Python可视化大屏】全流程揭秘实现可视化数据大屏的背后原理!

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【可视化大屏教程】用Python开发智慧城市数据分析大屏! - Python技术站

(0)
上一篇 2023年4月2日 下午4:53
下一篇 2023年4月2日

相关文章

  • 【Python爬虫案例】用python爬1000条哔哩哔哩搜索结果

    目录 一、爬取目标 二、讲解代码 三、同步讲解视频 四、完整源码 一、爬取目标 大家好,我是 @马哥python说 ,一名10年程序猿。 今天分享一期爬虫的案例,用python爬哔哩哔哩的搜索结果,也就是这个页面: 爬取字段,包含:页码, 视频标题, 视频作者, 视频编号, 创建时间, 视频时长, 弹幕数, 点赞数, 播放数, 收藏数, 分区类型, 标签, …

    2023年4月2日
    00
  • 【爬虫+数据清洗+可视化分析】舆情分析哔哩哔哩”阳了”的评论

    目录 一、背景介绍 二、爬虫代码 2.1 展示爬取结果 2.2 爬虫代码讲解 三、可视化代码 3.1 读取数据 3.2 数据清洗 3.3 可视化 3.3.1 IP属地分析-柱形图 3.3.2 评论时间分析-折线图 3.3.3 点赞数分布-直方图 3.3.4 评论内容-情感分布饼图 3.3.5 评论内容-词云图 三、演示视频 四、附完整源码 一、背景介绍 您好…

    2023年4月2日
    00
  • 【GUI开发】用python爬YouTube博主信息,并开发成exe软件!

    目录 一、背景介绍 二、代码讲解 2.1 爬虫 2.2 tkinter界面 2.3 存日志 三、说明 一、背景介绍 你好,我是@马哥python说,一名10年程序猿。 最近我用python开发了一个GUI桌面软件,目的是爬取相关YouTube博主的各种信息,字段包括: 视频标题、视频链接、博主名称、博主链接、国家、telegram链接、whatsapp链接、…

    2023年4月2日
    00
  • pyecharts世界地图用:国家中英文对照表.xlsx

    用pyecharts画Map或者Geo,需要用到的国家中英文对照表: 英文 中文 Zimbabwe 津巴布韦 Zambia 赞比亚 Yugoslavia 南斯拉夫 Yemen 也门 Western Sahara 西撒哈拉 Wallis and Futuna 瓦利斯群岛和富图纳群岛 W. Sahara 西撒哈拉 Vietnam 越南 Venezuela 委内瑞…

    Python开发 2023年4月2日
    00
  • 【2023知乎爬虫】我用Python爬虫爬了2386条知乎评论!

    目录 一、爬取目标 二、展示爬取结果 三、爬虫代码讲解 3.1 分析知乎页面 3.2 爬虫代码 四、同步视频 五、完整源码 您好,我是 @马哥python说,一枚10年程序猿。 一、爬取目标 前些天我分享过一篇微博的爬虫:https://www.cnblogs.com/mashukui/p/16414027.html但是知乎平台和微博平台的不同之处在于,微博…

    2023年4月2日
    00
  • 【Python爬虫技巧】快速格式化请求头Request Headers

    你好,我是 @马哥python说 。我们在写爬虫时,经常遇到这种问题,从目标网站把请求头复制下来,粘贴到爬虫代码里,需要一点一点修改格式,因为复制的是字符串string格式,请求头需要用字典dict格式:下面介绍一种简单的方法。首先,把复制到的请求头放到一个字符串里: # 请求头 headers = “”” Accept: text/html,applica…

    2023年4月2日
    00
  • 【技术流吃瓜】python可视化大屏舆情分析“张天爱“事件微博评论

    目录 一、事件背景 二、微热点分析 二、自开发Python舆情分析 2.1 Python爬虫 2.2 可视化大屏 2.2.1 大标题 2.2.2 词云图 2.2.3 条形图 2.2.4 饼图(玫瑰图) 2.2.5 地图 三、演示视频 四、完整源码 一、事件背景 大家好,我是马哥python说,一枚10年程序猿。 演员张天爱于2022.8.25号在网上爆出一段…

    2023年4月2日
    00
  • 【python爬虫案例】爬取微博任意搜索关键词的结果,以“唐山打人”为例

    目录 一、爬取目标 二、展示爬取结果 三、讲解代码 四、同步视频 4.1 演示视频 4.2 讲解视频 五、附:完整源码 一、爬取目标 大家好,我是马哥。 今天分享一期python爬虫案例,爬取目标是新浪微博的微博数据,包含: 页码, 微博id, 微博bid, 微博作者, 发布时间, 微博内容, 转发数, 评论数, 点赞数 经过分析调研,发现微博有3种访问方式…

    Python开发 2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部