下面我会分四个部分详细讲解MySQL特定表全量、增量数据同步到消息队列的解决方案。
1. 数据库准备
首先,我们需要有一个MySQL数据库实例,并在其中创建需要同步的特定表。为了方便演示,这里创建一个test数据库和一张users表:
CREATE DATABASE test;
USE test;
CREATE TABLE `users` (
`id` int NOT NULL AUTO_INCREMENT,
`name` varchar(20) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4;
2. 消息队列准备
其次,我们需要有一个消息队列实例。这里以Kafka为例。我们需要在Kafka中创建一个主题(topic)来接受MySQL同步到的数据。可以使用Kafka命令行工具创建:
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test_topic
3. 同步方案实现
接下来,我们需要编写一个程序来实现MySQL特定表的全量、增量数据同步到消息队列中。在实现过程中,需要注意以下几点:
- 全量同步:程序启动时,从MySQL中查询出表中所有数据,逐条发送到消息队列中。
- 增量同步:使用MySQL的binlog来实现。程序启动时,连接到MySQL的binlog,监听指定的特定表,当表中数据发生变化时,立即将变化的数据发送到消息队列中。
以下是一个示例程序,使用Java语言编写,使用了MyBatis作为MySQL数据库的ORM框架,使用了Debezium作为MySQL的binlog监听组件,使用了Schema Registry和Avro作为消息队列数据格式和序列化工具。
import io.debezium.config.Configuration;
import io.debezium.embedded.EmbeddedEngine;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import org.mybatis.spring.annotation.MapperScan;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
import javax.sql.DataSource;
import java.util.*;
@SpringBootApplication
@EnableScheduling
@MapperScan("com.example.mapper")
public class SyncApplication {
@Autowired
private DataSource dataSource;
public static void main(String[] args) {
SpringApplication.run(SyncApplication.class, args);
}
@Scheduled(fixedRate = 10000) // 每10秒钟执行一次
public void syncFull() {
try {
JdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
List<Map<String, Object>> users = jdbcTemplate.queryForList("select * from users");
for (Map<String, Object> user : users) {
sendKafkaMessage(user, "full");
}
} catch (Exception e) {
e.printStackTrace();
}
}
@Component
public static class DebeziumListener {
private KafkaProducer<String, GenericRecord> producer;
@Autowired
private DataSource dataSource;
private void start() {
try {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, AvroSerializer.class.getName());
props.put("schema.registry.url", "http://localhost:8081");
producer = new KafkaProducer<>(props);
Configuration conf = Configuration.create()
.with("name", "test-mysql-connector")
.with("connector.class", "io.debezium.connector.mysql.MySqlConnector")
.with("database.server.name", "test-mysql")
.with("database.hostname", "localhost")
.with("database.port", "3306")
.with("database.user", "root")
.with("database.password", "root")
.with("database.include.list", "test")
.with("database.history.kafka.bootstrap.servers", "localhost:9092")
.with("database.history.kafka.topic", "schema-changes.mysql.test");
EmbeddedEngine engine = EmbeddedEngine.create()
.using(conf)
.notifying(record -> {
try {
ObjectMapper mapper = new ObjectMapper();
Map<String, Object> valueMap = mapper.readValue(record.value().toString(), Map.class);
String schemaName = valueMap.get("schema").toString();
String tableName = valueMap.get("table").toString();
String op = valueMap.get("op").toString();
Map<String, Object> data = (Map<String, Object>) valueMap.get("payload");
if (op.equalsIgnoreCase("c") || op.equalsIgnoreCase("u") || op.equalsIgnoreCase("d")) {
Map<String, Object> message = new HashMap<>();
message.put("schema", schemaName);
message.put("table", tableName);
message.put("op", op);
Map<String, Object> payload = new HashMap<>();
if (op.equalsIgnoreCase("d")) {
payload.put("id", data.get("id"));
} else {
payload.putAll(data);
String id = data.get("id").toString();
message.put("partition", id);
message.put("key", id);
}
message.put("payload", payload);
sendKafkaMessage(message, "incremental");
}
} catch (Exception e) {
e.printStackTrace();
}
})
.build();
engine.start();
} catch (Exception e) {
e.printStackTrace();
}
}
private void sendKafkaMessage(Map<String, Object> message, String type) throws Exception {
String schemaString = "{\n" +
" \"name\": \"" + type + "-" + message.get("table") + "\",\n" +
" \"type\": \"record\",\n" +
" \"namespace\": \"com.example\",\n" +
" \"fields\": [\n" +
" {\"name\": \"id\", \"type\": \"int\"},\n" +
" {\"name\": \"name\", \"type\": \"string\"},\n" +
" {\"name\": \"age\", \"type\": \"int\"}\n" +
" ]\n" +
"}";
Schema.Parser parser = new Schema.Parser();
Schema schema = parser.parse(schemaString);
GenericRecord record = new GenericData.Record(schema);
record.put("id", message.get("id"));
record.put("name", message.get("name"));
record.put("age", message.get("age"));
ProducerRecord<String, GenericRecord> producerRecord = new ProducerRecord<>("test_topic", message.get("partition").toString(), message.get("key").toString(), record);
producer.send(producerRecord);
}
}
}
4. 示例应用
最后,我们可以启动该示例程序,并使用MySQL客户端插入一些数据,来验证同步是否成功。
mvn spring-boot:run
使用MySQL客户端插入数据:
USE test;
INSERT INTO users(name, age) VALUES('张三', 20);
INSERT INTO users(name, age) VALUES('李四', 21);
INSERT INTO users(name, age) VALUES('王五', 22);
可以在Kafka中查看是否成功接收到了数据:
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test_topic --from-beginning
这里只展示了全量、增量同步MySQL特定表数据到消息队列的一个示例。具体的实现方案还需要根据实际情况进行修改和完善。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:MySQL特定表全量、增量数据同步到消息队列-解决方案 - Python技术站