http://home.cnblogs.com/louyihang-loves-baiyan/
data_layer应该是网络的最底层,主要是将数据送给blob进入到net中,在data_layer中存在多个跟data_layer相关的类
- BaseDataLayer
- BasePrefetchingDataLayer
- DataLayer
- DummyDataLayer
- HDF5DataLayer
- HDF5OutputLayer
- ImageDataLayer
- MemoryDataLayer
- WindowDataLayer
- Batch
这里首先说明一下这几个类之间的区别。
首先Layer是基类,这个之前就已经提到过了。其次看HDF5相关的类有两个,一个是HDF5DataLayer,另一个是HDF5OutputLayer,主要是基于HDF5数据格式的读取和存储
留意到这个data_layer的头文件还include了不少头文件
#include <string>
#include <utility>
#include <vector>
#include "hdf5.h"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/data_reader.hpp"
#include "caffe/data_transformer.hpp"
#include "caffe/filler.hpp"
#include "caffe/internal_thread.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/blocking_queue.hpp"
#include "caffe/util/db.hpp"
hdf5就是之前说到的一种主要用于科学数据记录、能自我描述的数据格式。
还有几个跟data相关的头文件比如data_read.hpp,data_transformer.hpp
其中data_reader主要是负责数据的读取,传送到data layer中。并且对于每一个source,都会开一一起独立的reading thread读取线程,几十有多个solver在并行的跑。比如在多GPU训练的时候,可以保证对于数据库的读取是顺序的
data_transformer.hpp里面的DataTransformer这个类,这个类我们要关注一下,这个类主要能对input data 执一些预处理操作,比如缩放、镜像、减去均值。同时还支持一些随机的操作。
其核心的函数如下,这里总共有5个常在的Transform函数,其中所有函数的第二部分是相同的,都是一个目标blob,而输入根据输入的情况可以有所选择,可以是blob,也可以是opencv的mat 结构,或者proto中定义的datum结构。
void Transform(const Datum& datum, Blob<Dtype>* transformed_blob);
void Transform(const vector<Datum> & datum_vector, Blob<Dtype>* transformed_blob);
void Transform(const vector<cv::Mat> & mat_vector, Blob<Dtype>* transformed_blob);
void Transform(const cv::Mat& cv_img, Blob<Dtype>* transformed_blob);
void Transform(Blob<Dtype>* input_blob, Blob<Dtype>* transformed_blob);
TransformationParameter是该类构造器中需要传入的一些变形参数,相关的操作定义在proto中,摘录如下,可以看到总共有sacle,mirror,crop_size,mean_file,mean_value,force_color,force_grey共7个相关操作
message TransformationParameter {
optional float scale = 1 [default = 1];
optional bool mirror = 2 [default = false];
optional uint32 crop_size = 3 [default = 0];
optional string mean_file = 4;
repeated float mean_value = 5;
optional bool force_color = 6 [default = false];
optional bool force_gray = 7 [default = false];
}
首先对于dat_layer,里面根据继承关系最后的几个子类分别是ImageDataLayer,DataLayer,WindowDataLayer,MemoryDataLayer,HDF5以及Dummy这里暂时先不做分析。
其实最重要的就是类面的layerSetup.首先我们来看DataLayer的DataLayerSetUp
void DataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int batch_size = this->layer_param_.data_param().batch_size();
//获得相应的datum,用来初始化top blob
Datum& datum = *(reader_.full().peek());
//使用data_transformer 来计算根据datum的期望blob的shape
vector<int> top_shape = this->data_transformer_->InferBlobShape(datum);
this->transformed_data_.Reshape(top_shape);
//首先reshape top[0],再根据batch的大小进行预取
top_shape[0] = batch_size;
top[0]->Reshape(top_shape);
for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
this->prefetch_[i].data_.Reshape(top_shape);
}
LOG(INFO) << "output data size: " << top[0]->num() << ","
<< top[0]->channels() << "," << top[0]->height() << ","
<< top[0]->width();
// 同样reshape label的blob的shape
if (this->output_labels_) {
vector<int> label_shape(1, batch_size);
top[1]->Reshape(label_shape);
for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
this->prefetch_[i].label_.Reshape(label_shape);
}
}
}
MemoryDataLayer
void MemoryDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
//直接通过memory_data_param类设置layer的相关参数
batch_size_ = this->layer_param_.memory_data_param().batch_size();
channels_ = this->layer_param_.memory_data_param().channels();
height_ = this->layer_param_.memory_data_param().height();
width_ = this->layer_param_.memory_data_param().width();
size_ = channels_ * height_ * width_;
CHECK_GT(batch_size_ * size_, 0) <<
"batch_size, channels, height, and width must be specified and"
" positive in memory_data_param";
//这里跟datalayer一样都是先设置top[0],然后对label进行reshape
vector<int> label_shape(1, batch_size_);
top[0]->Reshape(batch_size_, channels_, height_, width_);
top[1]->Reshape(label_shape);
added_data_.Reshape(batch_size_, channels_, height_, width_);
added_label_.Reshape(label_shape);
data_ = NULL;
labels_ = NULL;
added_data_.cpu_data();
added_label_.cpu_data();
}
ImageDataLayer,它的DataLayerSetUP函数
void ImageDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int new_height = this->layer_param_.image_data_param().new_height();
const int new_width = this->layer_param_.image_data_param().new_width();
const bool is_color = this->layer_param_.image_data_param().is_color();
string root_folder = this->layer_param_.image_data_param().root_folder();
CHECK((new_height == 0 && new_width == 0) ||
(new_height > 0 && new_width > 0)) << "Current implementation requires "
"new_height and new_width to be set at the same time.";
//读取图像文件和相应的label
const string& source = this->layer_param_.image_data_param().source();
LOG(INFO) << "Opening file " << source;
std::ifstream infile(source.c_str());
string filename;
int label;
while (infile >> filename >> label) {
lines_.push_back(std::make_pair(filename, label));
}
if (this->layer_param_.image_data_param().shuffle()) {
// randomly shuffle data
LOG(INFO) << "Shuffling data";
const unsigned int prefetch_rng_seed = caffe_rng_rand();
prefetch_rng_.reset(new Caffe::RNG(prefetch_rng_seed));
ShuffleImages();
}
LOG(INFO) << "A total of " << lines_.size() << " images.";
lines_id_ = 0;
//check是否需要随机跳过一些图像
if (this->layer_param_.image_data_param().rand_skip()) {
unsigned int skip = caffe_rng_rand() %
this->layer_param_.image_data_param().rand_skip();
LOG(INFO) << "Skipping first " << skip << " data points.";
CHECK_GT(lines_.size(), skip) << "Not enough points to skip";
lines_id_ = skip;
}
//使用Opencv来读进图像,然后使用它初始化相应的top blob
cv::Mat cv_img = ReadImageToCVMat(root_folder + lines_[lines_id_].first,
new_height, new_width, is_color);
CHECK(cv_img.data) << "Could not load " << lines_[lines_id_].first;
//这里的步骤和上面相同,使用transformer来做reshape
vector<int> top_shape = this->data_transformer_->InferBlobShape(cv_img);
this->transformed_data_.Reshape(top_shape);
//之后部分跟前面差不多,初始化top[0]
const int batch_size = this->layer_param_.image_data_param().batch_size();
CHECK_GT(batch_size, 0) << "Positive batch size required";
top_shape[0] = batch_size;
for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
this->prefetch_[i].data_.Reshape(top_shape);
}
top[0]->Reshape(top_shape);
LOG(INFO) << "output data size: " << top[0]->num() << ","
<< top[0]->channels() << "," << top[0]->height() << ","
<< top[0]->width();
//reshape label
vector<int> label_shape(1, batch_size);
top[1]->Reshape(label_shape);
for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
this->prefetch_[i].label_.Reshape(label_shape);
}
}
WindowDataLayer的DataLayerSetUp,这个函数标比较长,我只列出了其中主要的部分,之前的Image相当于是已经剪裁过的一个图像,也就是说你的目标基本上是充棉了整个画面,而Window File是用于原始图的,也就是说有background和object,这个window file 的格式如下
window_file format
repeated:
# image_index
img_path (abs path)
channels
height
width
num_windows
class_index overlap x1 y1 x2 y2
//读取每一个box
int num_windows;
infile >> num_windows;
const float fg_threshold =
this->layer_param_.window_data_param().fg_threshold();
const float bg_threshold =
this->layer_param_.window_data_param().bg_threshold();
for (int i = 0; i < num_windows; ++i) {
int label, x1, y1, x2, y2;
float overlap;
infile >> label >> overlap >> x1 >> y1 >> x2 >> y2;
vector<float> window(WindowDataLayer::NUM);
window[WindowDataLayer::IMAGE_INDEX] = image_index;
window[WindowDataLayer::LABEL] = label;
window[WindowDataLayer::OVERLAP] = overlap;
window[WindowDataLayer::X1] = x1;
window[WindowDataLayer::Y1] = y1;
window[WindowDataLayer::X2] = x2;
window[WindowDataLayer::Y2] = y2;
// add window to foreground list or background list// read each box
int num_windows;
infile >> num_windows;
const float fg_threshold =
this->layer_param_.window_data_param().fg_threshold();
const float bg_threshold =
this->layer_param_.window_data_param().bg_threshold();
for (int i = 0; i < num_windows; ++i) {
int label, x1, y1, x2, y2;
float overlap;
infile >> label >> overlap >> x1 >> y1 >> x2 >> y2;
vector<float> window(WindowDataLayer::NUM);
window[WindowDataLayer::IMAGE_INDEX] = image_index;
window[WindowDataLayer::LABEL] = label;
window[WindowDataLayer::OVERLAP] = overlap;
window[WindowDataLayer::X1] = x1;
window[WindowDataLayer::Y1] = y1;
window[WindowDataLayer::X2] = x2;
window[WindowDataLayer::Y2] = y2;
//首先计算得到overlap,根据Overlap与fg_threshold的比较载添加到fg的list中
if (overlap >= fg_threshold) {
int label = window[WindowDataLayer::LABEL];
CHECK_GT(label, 0);
fg_windows_.push_back(window);
label_hist.insert(std::make_pair(label, 0));
label_hist[label]++;
} else if (overlap < bg_threshold) {
// background window, force label and overlap to 0
window[WindowDataLayer::LABEL] = 0;
window[WindowDataLayer::OVERLAP] = 0;
bg_windows_.push_back(window);
label_hist[0]++;
}
}
=-
if (overlap >= fg_threshold) {
int label = window[WindowDataLayer::LABEL];
CHECK_GT(label, 0);
fg_windows_.push_back(window);
label_hist.insert(std::make_pair(label, 0));
label_hist[label]++;
} else if (overlap < bg_threshold) {
//background的label和overlap都是0
window[WindowDataLayer::LABEL] = 0;
window[WindowDataLayer::OVERLAP] = 0;
bg_windows_.push_back(window);
label_hist[0]++;
}
}
..............
for (map<int, int>::iterator it = label_hist.begin();
it != label_hist.end(); ++it) {
LOG(INFO) << "class " << it->first << " has " << label_hist[it->first]
<< " samples";
}
LOG(INFO) << "Amount of context padding: "
<< this->layer_param_.window_data_param().context_pad();
LOG(INFO) << "Crop mode: "
<< this->layer_param_.window_data_param().crop_mode();
//这里之后的步骤就差不多了,同样是对transform的一些操作
const int crop_size = this->transform_param_.crop_size();
CHECK_GT(crop_size, 0);
const int batch_size = this->layer_param_.window_data_param().batch_size();
top[0]->Reshape(batch_size, channels, crop_size, crop_size);
for (int i = 0; i < this->PREFETCH_COUNT; ++i)
this->prefetch_[i].data_.Reshape(
batch_size, channels, crop_size, crop_size);
LOG(INFO) << "output data size: " << top[0]->num() << ","
<< top[0]->channels() << "," << top[0]->height() << ","
<< top[0]->width();
// 对label进行reshape
vector<int> label_shape(1, batch_size);
top[1]->Reshape(label_shape);
for (int i = 0; i < this->PREFETCH_COUNT; ++i) {
this->prefetch_[i].label_.Reshape(label_shape);
}
//做减均值的操作
has_mean_file_ = this->transform_param_.has_mean_file();
has_mean_values_ = this->transform_param_.mean_value_size() > 0;
if (has_mean_file_) {
const string& mean_file =
this->transform_param_.mean_file();
LOG(INFO) << "Loading mean file from: " << mean_file;
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
data_mean_.FromProto(blob_proto);
}
if (has_mean_values_) {
CHECK(has_mean_file_ == false) <<
"Cannot specify mean_file and mean_value at the same time";
for (int c = 0; c < this->transform_param_.mean_value_size(); ++c) {
mean_values_.push_back(this->transform_param_.mean_value(c));
}
CHECK(mean_values_.size() == 1 || mean_values_.size() == channels) <<
"Specify either 1 mean_value or as many as channels: " << channels;
if (channels > 1 && mean_values_.size() == 1) {
// Replicate the mean_value for simplicity
for (int c = 1; c < channels; ++c) {
mean_values_.push_back(mean_values_[0]);
}
}
}
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Caffe源码解析4: Data_layer Caffe源码解析4: Data_layer - Python技术站