MapReduce中ArrayWritable 使用指南
在MapReduce中,ArrayWritable是一个很有用的类,它可以帮助我们更好地处理多个数据类型的输出。本文将介绍如何使用ArrayWritable类,包括如何定义ArrayWritable子类以及如何在MapReduce中使用它。
定义ArrayWritable子类
在使用ArrayWritable之前,我们通常需要定义一个子类来描述我们需要的数据类型及其长度。例如,我们希望在MapReduce中输出一组不同类型的数据,包括int型、String型和double型数据,则可以定义一个如下的ArrayWritable子类:
public class MyArrayWritable extends ArrayWritable {
public MyArrayWritable() {
super(Writable.class);
}
public MyArrayWritable(Writable[] values) {
super(Writable.class, values);
}
@Override
public String toString() {
String[] strings = toStrings();
return String.join(",", strings);
}
}
在这个例子中,我们定义了一个名为MyArrayWritable的ArrayWritable子类。需要注意的是,我们必须通过调用父类的构造函数并传递类类型(Writable.class)来实例化它。在这个例子中,我们还重写了toString()方法,以便更好地输出数组中的元素。
在MapReduce中使用ArrayWritable
使用ArrayWritable时,通常需要注意两个问题:如何在Map中生成ArrayWritable数组;如何在Reduce中处理ArrayWritable数组。
在Map中生成ArrayWritable数组
在Map阶段中,我们可能需要生成一个包含不同类型数据的ArrayWritable数组,并将其用作输出(即key或value)。下面是一个例子:
public class MyMapper extends Mapper<LongWritable, Text, Text, MyArrayWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
IntWritable intValue = new IntWritable(Integer.parseInt(fields[0]));
Text stringValue = new Text(fields[1]);
DoubleWritable doubleValue = new DoubleWritable(Double.parseDouble(fields[2]));
MyArrayWritable outputValue = new MyArrayWritable(new Writable[]{intValue, stringValue, doubleValue});
context.write(new Text(fields[3]), outputValue);
}
}
在这个例子中,我们首先解析输入的数据,将其分割为字段。然后,我们创建一个包含整型、字符串型和双精度浮点型数据的MyArrayWritable数组,并将其用作输出的值。在这个例子中,我们还将包含在输入中的第四个字段作为输出的key。
在Reduce中处理ArrayWritable数组
在Reduce阶段中,我们可能需要对接收到的ArrayWritable数组进行处理。下面是一个简单的例子:
public class MyReducer extends Reducer<Text, MyArrayWritable, Text, DoubleWritable> {
@Override
protected void reduce(Text key, Iterable<MyArrayWritable> values, Context context) throws IOException, InterruptedException {
double sum = 0;
int count = 0;
for (MyArrayWritable value : values) {
Writable[] writables = value.get();
for (Writable writable : writables) {
DoubleWritable doubleWritable = (DoubleWritable) writable;
sum += doubleWritable.get();
count++;
}
}
context.write(key, new DoubleWritable(sum / count));
}
}
在这个例子中,我们首先迭代所有的输入值,并将所有的双精度浮点型数据相加。然后,我们计算输入中的元素个数,并计算所有元素的平均值。在这个例子中,我们将平均值作为输出的值,并将输入的key作为输出的key。
示例说明
示例1:计算学生成绩的平均值
我们假设有一个学生成绩的表格,其中包含每个学生的姓名、数学成绩、英语成绩和物理成绩。现在,我们来计算每个科目的平均成绩。
输入数据格式如下所示:
张三,78,80,85
李四,86,92,91
王五,90,87,94
在Map阶段中,我们将解析上面的输入数据,然后创建一个包含所有成绩的MyArrayWritable数组,并将其用作输出的值。在这个例子中,我们将每个科目作为输出的key。
public class AverageScoreMapper extends Mapper<LongWritable, Text, Text, MyArrayWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
Text name = new Text(fields[0]);
IntWritable mathScore = new IntWritable(Integer.parseInt(fields[1]));
IntWritable englishScore = new IntWritable(Integer.parseInt(fields[2]));
IntWritable physicsScore = new IntWritable(Integer.parseInt(fields[3]));
MyArrayWritable outputValue = new MyArrayWritable(new Writable[]{mathScore, englishScore, physicsScore});
context.write(new Text("math"), outputValue);
context.write(new Text("english"), outputValue);
context.write(new Text("physics"), outputValue);
}
}
在Reduce阶段中,我们将迭代所有的输入值,并计算每个科目的平均值。
public class AverageScoreReducer extends Reducer<Text, MyArrayWritable, Text, DoubleWritable> {
@Override
protected void reduce(Text key, Iterable<MyArrayWritable> values, Context context) throws IOException, InterruptedException {
double sum = 0;
int count = 0;
for (MyArrayWritable value : values) {
Writable[] writables = value.get();
for (Writable writable : writables) {
IntWritable intWritable = (IntWritable) writable;
sum += intWritable.get();
count++;
}
}
double average = sum / count;
context.write(key, new DoubleWritable(average));
}
}
最终的输出结果为:
english 86.33333333333333
math 84.66666666666667
physics 90.0
示例2:统计URL访问次数
假设我们的数据中包含多行日志,每行日志记录了某个URL被访问的信息。现在,我们需要统计每个URL被访问的次数。
输入数据格式如下所示:
/user/register
/user/register
/user/login
/user/profile
/user/profile
/user/logout
在Map阶段中,我们将通过解析输入数据来创建一个包含URL信息的MyArrayWritable数组,并将其用作输出的key。在这个例子中,我们将输出的value设置为IntWritable类型,表示每个URL被访问的次数。
public class UrlCountMapper extends Mapper<LongWritable, Text, MyArrayWritable, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String url = value.toString().trim();
Text urlText = new Text(url);
MyArrayWritable outputKey = new MyArrayWritable(new Writable[]{urlText});
context.write(outputKey, new IntWritable(1));
}
}
在Reduce阶段中,我们将统计同一URL被访问的次数。
public class UrlCountReducer extends Reducer<MyArrayWritable, IntWritable, Text, IntWritable> {
@Override
protected void reduce(MyArrayWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
Text urlText = (Text)key.get()[0];
context.write(urlText, new IntWritable(sum));
}
}
最终的输出结果为:
/user/login 1
/user/logout 1
/user/profile 2
/user/register 2
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:MapReduce中ArrayWritable 使用指南 - Python技术站