注意力往往与encoder-decoder(seq2seq)框架搭在一起,假设我们编码前与解码后的序列如下:
编码时,我们将source通过非线性变换到中间语义:
则我们解码时,第i个输出为:
可以看到,不管i为多少,都是基于相同的中间语义C进行解码的,也就是说,我们的注意力对所有输出都是相同的。所以,注意力机制的任务就是突出重点,也就是说,我们的中间语义C对不同i应该有不同的侧重点,即上式变为:
常见的有Bahdanau Attention
e(h,s)代表一层全连接层。
及Luong Attention
学习的一个github上的代码,分析了一下实现过程。代码下载链接:https://github.com/Choco31415/Attention_Network_With_Keras
代码的主要目标是通过一个描述时间的字符串,预测为数字形式的字符串。如“ten before ten o\'clock a.m”预测为09:50
在jupyter上运行,代码如下:
1,导入模块,好像并没有全部使用到,如Permute,Multiply,Reshape,LearningRateScheduler等
1 from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply, Reshape 2 from keras.layers import RepeatVector, Dense, Activation, Lambda 3 from keras.optimizers import Adam 4 #from keras.utils import to_categorical 5 from keras.models import load_model, Model 6 #from keras.callbacks import LearningRateScheduler 7 import keras.backend as K 8 9 import matplotlib.pyplot as plt 10 %matplotlib inline 11 12 import random 13 #import math 14 15 import json 16 import numpy as np
2,加载数据集,以及翻译前和翻译后的词典
1 with open(\'data/Time Dataset.json\',\'r\') as f: 2 dataset = json.loads(f.read()) 3 with open(\'data/Time Vocabs.json\',\'r\') as f: 4 human_vocab, machine_vocab = json.loads(f.read()) 5 6 human_vocab_size = len(human_vocab) 7 machine_vocab_size = len(machine_vocab)
这里human_vocab词典是将每个字符映射到索引,machine_vocab是将翻译后的字符映射到索引,因为翻译后的时间只包含0-9以及冒号:
3,定义数据处理方法
1 def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty): 2 """ 3 A method for tokenizing data. 4 5 Inputs: 6 dataset - A list of sentence data pairs. 7 human_vocab - A dictionary of tokens (char) to id\'s. 8 machine_vocab - A dictionary of tokens (char) to id\'s. 9 Tx - X data size 10 Ty - Y data size 11 12 Outputs: 13 X - Sparse tokens for X data 14 Y - Sparse tokens for Y data 15 Xoh - One hot tokens for X data 16 Yoh - One hot tokens for Y data 17 """ 18 19 # Metadata 20 m = len(dataset) 21 22 # Initialize 23 X = np.zeros([m, Tx], dtype=\'int32\') 24 Y = np.zeros([m, Ty], dtype=\'int32\') 25 26 # Process data 27 for i in range(m): 28 data = dataset[i] 29 X[i] = np.array(tokenize(data[0], human_vocab, Tx)) 30 Y[i] = np.array(tokenize(data[1], machine_vocab, Ty)) 31 32 # Expand one hots 33 Xoh = oh_2d(X, len(human_vocab)) 34 Yoh = oh_2d(Y, len(machine_vocab)) 35 36 return (X, Y, Xoh, Yoh) 37 38 def tokenize(sentence, vocab, length): 39 """ 40 Returns a series of id\'s for a given input token sequence. 41 42 It is advised that the vocab supports <pad> and <unk>. 43 44 Inputs: 45 sentence - Series of tokens 46 vocab - A dictionary from token to id 47 length - Max number of tokens to consider 48 49 Outputs: 50 tokens - 51 """ 52 tokens = [0]*length 53 for i in range(length): 54 char = sentence[i] if i < len(sentence) else "<pad>" 55 char = char if (char in vocab) else "<unk>" 56 tokens[i] = vocab[char] 57 58 return tokens 59 60 def ids_to_keys(sentence, vocab): 61 """ 62 Converts a series of id\'s into the keys of a dictionary. 63 """ 64 reverse_vocab = {v: k for k, v in vocab.items()} 65 66 return [reverse_vocab[id] for id in sentence] 67 68 def oh_2d(dense, max_value): 69 """ 70 Create a one hot array for the 2D input dense array. 71 """ 72 # Initialize 73 oh = np.zeros(np.append(dense.shape, [max_value])) 74 # oh=np.zeros((dense.shape[0],dense.shape[1],max_value)) 这样写更为直观 75 76 # Set correct indices 77 ids1, ids2 = np.meshgrid(np.arange(dense.shape[0]), np.arange(dense.shape[1])) 78 79 # \'F\'表示一列列的展开,默认按行展开。将id序列中每个数字再one-hot化。 80 oh[ids1.flatten(), ids2.flatten(), dense.flatten(\'F\').astype(int)] = 1 81 82 return oh
4,输入中最长的字符串为41,输出长度都是5,训练测试数据使用one-hot编码后的,训练集占比80%
1 Tx = 41 # Max x sequence length 2 Ty = 5 # y sequence length 3 X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty) 4 5 # Split data 80-20 between training and test 6 train_size = int(0.8*len(dataset)) 7 Xoh_train = Xoh[:train_size] 8 Yoh_train = Yoh[:train_size] 9 Xoh_test = Xoh[train_size:] 10 Yoh_test = Yoh[train_size:]
5,定义每次新预测时注意力的更新
在预测输出yi-1后,预测yi时,我们需要不同的注意力分布,即重新生成这个分布
1 # Define part of the attention layer gloablly so as to 2 # share the same layers for each attention step. 3 def softmax(x): 4 return K.softmax(x, axis=1) 5 # 重复矢量,用于将一个矢量扩展成一个维度合适的tensor 6 at_repeat = RepeatVector(Tx) 7 # 在最后一位进行维度合并 8 at_concatenate = Concatenate(axis=-1) 9 at_dense1 = Dense(8, activation="tanh") 10 at_dense2 = Dense(1, activation="relu") 11 at_softmax = Activation(softmax, name=\'attention_weights\') 12 # 这里参数名为axes。。虽然和axis是一个意思 13 at_dot = Dot(axes=1) 14 15 # 每次新的预测的时候都需要更新attention 16 def one_step_of_attention(h_prev, a): 17 """ 18 Get the context. 19 20 Input: 21 h_prev - Previous hidden state of a RNN layer (m, n_h) 22 a - Input data, possibly processed (m, Tx, n_a) 23 24 Output: 25 context - Current context (m, Tx, n_a) 26 """ 27 # Repeat vector to match a\'s dimensions 28 h_repeat = at_repeat(h_prev) 29 # Calculate attention weights 30 i = at_concatenate([a, h_repeat]) #对应公式中x和yt-1合并 31 i = at_dense1(i)#对应公式中第一个Dense 32 i = at_dense2(i)#第二个Dense 33 attention = at_softmax(i)#Softmax,此时得到一个注意力分布 34 # Calculate the context 35 # 这里使用新的attention与输入相乘,即注意力的核心原理:对于输入产生某种偏好分布 36 context = at_dot([attention, a])#Dot,使用注意力偏好分布作用于输入,返回更新后的输入 37 38 return context
以上,注意力的计算公式如下所示:
6,定义注意力层
1 def attention_layer(X, n_h, Ty): 2 """ 3 Creates an attention layer. 4 5 Input: 6 X - Layer input (m, Tx, x_vocab_size) 7 n_h - Size of LSTM hidden layer 8 Ty - Timesteps in output sequence 9 10 Output: 11 output - The output of the attention layer (m, Tx, n_h) 12 """ 13 # Define the default state for the LSTM layer 14 # Lambda层不需要训练参数,这里初始化状态 15 h = Lambda(lambda X: K.zeros(shape=(K.shape(X)[0], n_h)))(X) 16 c = Lambda(lambda X: K.zeros(shape=(K.shape(X)[0], n_h)))(X) 17 # Messy, but the alternative is using more Input() 18 19 at_LSTM = LSTM(n_h, return_state=True) 20 21 output = [] 22 23 # Run attention step and RNN for each output time step
# 这里就是每次预测时,先更新context,用这个新的context通过LSTM获得各个输出h 24 for _ in range(Ty): 25 # 第一次使用初始化的注意力参数作用输入X,之后使用上一次的h作用输入X,保证每次预测的时候注意力都对输入产生偏好 26 context = one_step_of_attention(h, X) 27 # 得到新的输出 28 h, _, c = at_LSTM(context, initial_state=[h, c]) 29 30 output.append(h) 31 # 返回全部输出 32 return output
7,定义模型
1 layer3 = Dense(machine_vocab_size, activation=softmax) 2 layer1_size=32 3 layer2_size=64 4 def get_model(Tx, Ty, layer1_size, layer2_size, x_vocab_size, y_vocab_size): 5 """ 6 Creates a model. 7 8 input: 9 Tx - Number of x timesteps 10 Ty - Number of y timesteps 11 size_layer1 - Number of neurons in BiLSTM 12 size_layer2 - Number of neurons in attention LSTM hidden layer 13 x_vocab_size - Number of possible token types for x 14 y_vocab_size - Number of possible token types for y 15 16 Output: 17 model - A Keras Model. 18 """ 19 20 # Create layers one by one 21 X = Input(shape=(Tx, x_vocab_size)) 22 # 使用双向LSTM 23 a1 = Bidirectional(LSTM(layer1_size, return_sequences=True), merge_mode=\'concat\')(X) 24 25 # 注意力层 26 a2 = attention_layer(a1, layer2_size, Ty) 27 # 对输出h应用一个Dense得到最后输出y 28 a3 = [layer3(timestep) for timestep in a2] 29 30 # Create Keras model 31 model = Model(inputs=[X], outputs=a3) 32 33 return model
8,训练模型
1 model = get_model(Tx, Ty, layer1_size, layer2_size, human_vocab_size, machine_vocab_size) 2 #这里我们可以看下模型的构成,需要提前安装graphviz模块 3 from keras.utils import plot_model 4 #在当前路径下生成模型各层的结构图,自己去看看理解 5 plot_model(model,show_shapes=True,show_layer_names=True) 6 opt = Adam(lr=0.05, decay=0.04, clipnorm=1.0) 7 model.compile(optimizer=opt, loss=\'categorical_crossentropy\', metrics=[\'accuracy\']) 8 # (8000,5,11)->(5,8000,11),以时间序列而非样本序列去训练,因为多个样本间是没有“序”的关系的,这样RNN也学不到啥东西 9 outputs_train = list(Yoh_train.swapaxes(0,1)) 10 model.fit([Xoh_train], outputs_train, epochs=30, batch_size=100,verbose=2
如下为模型的结构图
9,评估
1 outputs_test = list(Yoh_test.swapaxes(0,1)) 2 score = model.evaluate(Xoh_test, outputs_test) 3 print(\'Test loss: \', score[0])
10,预测
这里就随机对数据集中的一个样本进行预测
3 i = random.randint(0, len(dataset)) 4 5 def get_prediction(model, x): 6 prediction = model.predict(x) 7 max_prediction = [y.argmax() for y in prediction] 8 str_prediction = "".join(ids_to_keys(max_prediction, machine_vocab)) 9 return (max_prediction, str_prediction) 10 11 max_prediction, str_prediction = get_prediction(model, Xoh[i:i+1]) 12 13 print("Input: " + str(dataset[i][0])) 14 print("Tokenized: " + str(X[i])) 15 print("Prediction: " + str(max_prediction)) 16 print("Prediction text: " + str(str_prediction))
11,还可以查看一下注意力的图像
1 i = random.randint(0, len(dataset)) 2 3 def plot_attention_graph(model, x, Tx, Ty, human_vocab, layer=7): 4 # Process input 5 tokens = np.array([tokenize(x, human_vocab, Tx)]) 6 tokens_oh = oh_2d(tokens, len(human_vocab)) 7 8 # Monitor model layer 9 layer = model.layers[layer] 10 11 layer_over_time = K.function(model.inputs, [layer.get_output_at(t) for t in range(Ty)]) 12 layer_output = layer_over_time([tokens_oh]) 13 layer_output = [row.flatten().tolist() for row in layer_output] 14 15 # Get model output 16 prediction = get_prediction(model, tokens_oh)[1] 17 18 # Graph the data 19 fig = plt.figure() 20 fig.set_figwidth(20) 21 fig.set_figheight(1.8) 22 ax = fig.add_subplot(111) 23 24 plt.title("Attention Values per Timestep") 25 26 plt.rc(\'figure\') 27 cax = plt.imshow(layer_output, vmin=0, vmax=1) 28 fig.colorbar(cax) 29 30 plt.xlabel("Input") 31 ax.set_xticks(range(Tx)) 32 ax.set_xticklabels(x) 33 34 plt.ylabel("Output") 35 ax.set_yticks(range(Ty)) 36 ax.set_yticklabels(prediction) 37 38 plt.show() 39 # 这个图像如何看:先看纵坐标,从上到下,为15:48,生成1和5时注意力在four这个单词上,生成48分钟的时候注意力集中在before单词上,这个例子非常好 40 plot_attention_graph(model, dataset[i][0], Tx, Ty, human_vocab)
如图所示,在预测1和5时注意力在four单词上,预测4,8时注意力在before单词上,这比较符合逻辑。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:注意力机制及Keras实现 - Python技术站