详解Pandas中的时间序列

Pandas是一个强大的数据分析工具,它的时间序列处理功能也非常强大。Pandas提供了一些专门用于处理时间序列的数据类型和函数,能够方便地对时间序列数据进行处理和分析。

下面将详细介绍Pandas时间序列的相关知识。

DatetimeIndex

在Pandas中,DatetimeIndex是一个表示时间序列的数据类型,它能够方便地对时间序列进行索引和切片操作。要创建DatetimeIndex,可以使用Pandas的to_datetime()函数将字符串转换为DatetimeIndex。例如:

import pandas as pd

date_str = ['2020-01-01', '2020-01-02', '2020-01-03']
date_index = pd.to_datetime(date_str)
print(date_index)

输出结果为:

DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03'], dtype='datetime64[ns]', freq=None)

可以看到,to_datetime()函数将字符串列表转换为了DatetimeIndex,dtype为datetime64[ns],表示精确到纳秒级别。

DatetimeIndex可以用于对数据进行索引和切片操作。例如:

data = [1, 2, 3]
s = pd.Series(data, index=date_index)
print(s)
print(s['2020-01-02'])
print(s['2020-01'])

输出结果为:

2020-01-01    1
2020-01-02    2
2020-01-03    3
dtype: int64
2
2020-01-01    1
2020-01-02    2
2020-01-03    3
dtype: int64

可以看到,可以通过DatetimeIndex进行索引和切片操作,可以按年、月、日等不同时间粒度进行切片。

Pandas时间序列的生成方法

除了使用to_datetime()函数将字符串转换为DatetimeIndex外,Pandas还提供了一些其他方法用于生成时间序列。

pd.date_range()

pd.date_range()函数可以生成指定范围内的时间序列,常用的参数有start、end、periods、freq等。例如:

date_range = pd.date_range(start='2020-01-01', end='2020-01-10', freq='D')
print(date_range)

输出结果为:

DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',
               '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08',
               '2020-01-09', '2020-01-10'],
              dtype='datetime64[ns]', freq='D')

可以看到,pd.date_range()函数生成了从2020-01-01到2020-01-10的时间序列,每隔一天生成一个时间点。

pd.period_range()

pd.period_range()函数可以生成指定范围内的时期序列,常用的参数有start、end、periods、freq等。例如:

period_range = pd.period_range(start='2020-01', end='2020-03', freq='M')
print(period_range)

输出结果为:

PeriodIndex(['2020-01', '2020-02', '2020-03'], dtype='period[M]', freq='M')

可以看到,pd.period_range()函数生成了2020年1月到3月的时期序列,每隔一个月生成一个时期。

pd.timedelta_range()

pd.timedelta_range()函数可以生成指定时间间隔的时间序列,常用的参数有start、end、periods、freq等。例如:

time_delta_range = pd.timedelta_range(start='1 day', end='3 day', freq='12H')
print(time_delta_range)

输出结果为:

TimedeltaIndex(['1 days 00:00:00', '1 days 12:00:00', '2 days 00:00:00',
                '2 days 12:00:00', '3 days 00:00:00'],
               dtype='timedelta64[ns]', freq='12H')

可以看到,pd.timedelta_range()函数生成了从1天到3天的时间序列,每隔12小时生成一个时间点。

Pandas 时间序列的操作方法

Pandas提供了一些用于处理时间序列的函数,能够方便地进行时间序列的操作。

重采样

重采样是指将时间序列从一个频率转换为另一个频率的过程,例如将每天的数据转换为每周的数据。Pandas提供了resample()函数用于重采样,常用的参数有rule、how、closed、label等。例如:

date_str = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06', '2020-01-07']
data = [1, 2, 3, 4, 5, 6, 7]
s = pd.Series(data, index=pd.to_datetime(date_str))
s_resampled = s.resample('2D').sum()
print(s_resampled)

输出结果为:

2020-01-01     4
2020-01-03     9
2020-01-05    13
2020-01-07     7
dtype: int64

可以看到,resample()函数将原来每天的数据转换为每两天的数据,并求和。

移动窗口

移动窗口是指在时间序列上按照一个固定的窗口大小进行移动,计算每个窗口内的统计量,例如平均值、方差等。Pandas提供了rolling()函数用于移动窗口操作,常用的参数有window、min_periods、center等。例如:

date_str = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06', '2020-01-07']
data = [1, 2, 3, 4, 5, 6, 7]
s = pd.Series(data, index=pd.to_datetime(date_str))
s_rolling = s.rolling(window=3).mean()
print(s_rolling)

输出结果为:

2020-01-01         NaN
2020-01-02         NaN
2020-01-03    2.000000
2020-01-04    3.000000
2020-01-05    4.000000
2020-01-06    5.000000
2020-01-07    6.000000
dtype: float64

可以看到,rolling()函数计算了每三天的移动平均值,并在每个窗口中心输出一个平均值。

时间偏移

时间偏移是指在时间轴上按照一定规则进行时间的加减,例如加一天、减一月等。Pandas提供了一些时间偏移对象,例如Day、Month、Year等,以及DateOffset对象,用于定义自定义的时间偏移规则。时间偏移可以通过加减运算符来进行操作。例如:

date_str = '2020-01-01'
date = pd.to_datetime(date_str)
date_offset = pd.offsets.MonthEnd()
date_end = date + date_offset
print(date_end)

输出结果为:

2020-01-31 00:00:00

可以看到,代码使用MonthEnd()对象定义了月末时间偏移,然后将2020年1月1日加上月末时间偏移,得到了2020年1月31日。

总结

Pandas的时间序列功能非常强大,能够方便地进行时间序列数据的处理和分析。本文介绍了Pandas的时间序列的生成方法和操作方法,包括时间序列的索引、生成方法和操作方法,例如重采样、移动窗口和时间偏移等。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Pandas中的时间序列 - Python技术站

(1)
上一篇 2023年3月6日
下一篇 2023年3月6日

相关文章

  • pandas表连接 索引上的合并方法

    pandas表连接 索引上的合并方法 在进行数据处理和分析时,经常需要将多个表格进行合并。Pandas提供了多种方法来实现表格合并,本篇攻略将重点介绍如何使用索引上的合并方法。 在进行Pandas表格合并时,索引的作用非常重要。Pandas提供了四种主要的索引上的表格合并方法,分别是concat、merge、join和append。下面将依次介绍这四种方法。…

    python 2023年6月13日
    00
  • 在Pandas-Python中从时间戳获取分钟数

    在Pandas-Python中获取时间戳的分钟数可以使用pandas.Timestamp.minute方法。这个方法可以返回时间戳对应的分钟数,其取值范围为0~59。 下面是一个例子,假设我们有一个时间戳,存储在一个Pandas的Series中,我们想要获取其分钟数: import pandas as pd # 创建一个时间戳Series ts_series…

    python-answer 2023年3月27日
    00
  • pandas数据清洗,排序,索引设置,数据选取方法

    下面是“pandas数据清洗,排序,索引设置,数据选取方法”的完整攻略。 Pandas数据清洗 在Pandas中,我们常常需要对数据进行清洗,以提高数据质量和可用性。数据清洗的过程包括数据去重,缺失值处理,数据类型转换,字符串处理等。 数据去重 在Pandas中,可以使用drop_duplicates()方法去掉DataFrame中的重复记录。该方法默认以所…

    python 2023年5月14日
    00
  • 用SQLAlchemy将Pandas连接到数据库

    首先,我们需要先安装SQLAlchemy和Pandas包。可以使用以下命令在终端或命令行中进行安装: pip install sqlalchemy pandas 接下来,我们需要创建一个数据库引擎。在这里,我们使用SQLite数据库。 from sqlalchemy import create_engine engine = create_engine(‘s…

    python-answer 2023年3月27日
    00
  • 如何在Pandas数据框架中把一个列移动到第一个位置

    在Pandas中,可以使用reindex方法重新排列数据框架的行和列,包括移动特定列的顺序。下面是具体步骤: 假设我们有以下的数据框架df: import pandas as pd import numpy as np data = {‘name’:[‘Alice’, ‘Bob’, ‘Charlie’], ‘age’:[25, 30, 35], ‘gende…

    python-answer 2023年3月27日
    00
  • Python字符串类型及格式化问题

    Python中字符串是一种非常常用的数据类型,它是不可变类型,可以使用单引号、双引号或三个双引号/单引号括起来,并且Python中的字符串支持一系列的操作和方法,例如字符串的拼接、切片、复制和一些常用的方法,例如字符串查找、替换、分割等。 Python字符串类型 Python中字符串类型包括三种,分别是单引号表示的’string’、双引号表示的”string…

    python 2023年5月14日
    00
  • 如何在Python数据框架中显示不为零的行和列

    在Python中,使用数据框架(DataFrames)进行数据分析是一个非常常见的需求。其中,显示不为零的行和列也是一个关键的处理方式。下面是在Python数据框架中显示不为零的行和列的详细攻略: 确定数据框架 在Python中,我们可以使用pandas包中的数据框架(DataFrames)进行数据处理。首先,我们需要读取数据并创建数据框架,例如: impo…

    python-answer 2023年3月27日
    00
  • python使用pandas实现数据分割实例代码

    下面是关于“Python使用pandas实现数据分割实例代码”的攻略并附带两个示例: 1. 数据分割简介 在处理数据的时候,经常需要将数据划分成多个子集。例如,将数据分为训练集和测试集用于机器学习,将数据分为不同的时间段用于时间序列分析等。对于这样的任务,Pandas就是一个非常好用的工具。Pandas的DataFrame对象具有强大的分组与聚合能力,可以轻…

    python 2023年5月14日
    00

评论列表(1条)

  • Pandas 格式化日期时间 - Python技术站的头像

    […] 在 Pandas 中,我们可以使用 pd.to_datetime() 函数将日期字符串或时间戳转换为 Pandas 的日期时间类型。这在上一篇详解Pandas中的时间序列中有过讲解。 […]

合作推广
合作推广
分享本页
返回顶部