详解Pandas中的时间序列

Pandas是一个强大的数据分析工具,它的时间序列处理功能也非常强大。Pandas提供了一些专门用于处理时间序列的数据类型和函数,能够方便地对时间序列数据进行处理和分析。

下面将详细介绍Pandas时间序列的相关知识。

DatetimeIndex

在Pandas中,DatetimeIndex是一个表示时间序列的数据类型,它能够方便地对时间序列进行索引和切片操作。要创建DatetimeIndex,可以使用Pandas的to_datetime()函数将字符串转换为DatetimeIndex。例如:

import pandas as pd

date_str = ['2020-01-01', '2020-01-02', '2020-01-03']
date_index = pd.to_datetime(date_str)
print(date_index)

输出结果为:

DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03'], dtype='datetime64[ns]', freq=None)

可以看到,to_datetime()函数将字符串列表转换为了DatetimeIndex,dtype为datetime64[ns],表示精确到纳秒级别。

DatetimeIndex可以用于对数据进行索引和切片操作。例如:

data = [1, 2, 3]
s = pd.Series(data, index=date_index)
print(s)
print(s['2020-01-02'])
print(s['2020-01'])

输出结果为:

2020-01-01    1
2020-01-02    2
2020-01-03    3
dtype: int64
2
2020-01-01    1
2020-01-02    2
2020-01-03    3
dtype: int64

可以看到,可以通过DatetimeIndex进行索引和切片操作,可以按年、月、日等不同时间粒度进行切片。

Pandas时间序列的生成方法

除了使用to_datetime()函数将字符串转换为DatetimeIndex外,Pandas还提供了一些其他方法用于生成时间序列。

pd.date_range()

pd.date_range()函数可以生成指定范围内的时间序列,常用的参数有start、end、periods、freq等。例如:

date_range = pd.date_range(start='2020-01-01', end='2020-01-10', freq='D')
print(date_range)

输出结果为:

DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04',
               '2020-01-05', '2020-01-06', '2020-01-07', '2020-01-08',
               '2020-01-09', '2020-01-10'],
              dtype='datetime64[ns]', freq='D')

可以看到,pd.date_range()函数生成了从2020-01-01到2020-01-10的时间序列,每隔一天生成一个时间点。

pd.period_range()

pd.period_range()函数可以生成指定范围内的时期序列,常用的参数有start、end、periods、freq等。例如:

period_range = pd.period_range(start='2020-01', end='2020-03', freq='M')
print(period_range)

输出结果为:

PeriodIndex(['2020-01', '2020-02', '2020-03'], dtype='period[M]', freq='M')

可以看到,pd.period_range()函数生成了2020年1月到3月的时期序列,每隔一个月生成一个时期。

pd.timedelta_range()

pd.timedelta_range()函数可以生成指定时间间隔的时间序列,常用的参数有start、end、periods、freq等。例如:

time_delta_range = pd.timedelta_range(start='1 day', end='3 day', freq='12H')
print(time_delta_range)

输出结果为:

TimedeltaIndex(['1 days 00:00:00', '1 days 12:00:00', '2 days 00:00:00',
                '2 days 12:00:00', '3 days 00:00:00'],
               dtype='timedelta64[ns]', freq='12H')

可以看到,pd.timedelta_range()函数生成了从1天到3天的时间序列,每隔12小时生成一个时间点。

Pandas 时间序列的操作方法

Pandas提供了一些用于处理时间序列的函数,能够方便地进行时间序列的操作。

重采样

重采样是指将时间序列从一个频率转换为另一个频率的过程,例如将每天的数据转换为每周的数据。Pandas提供了resample()函数用于重采样,常用的参数有rule、how、closed、label等。例如:

date_str = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06', '2020-01-07']
data = [1, 2, 3, 4, 5, 6, 7]
s = pd.Series(data, index=pd.to_datetime(date_str))
s_resampled = s.resample('2D').sum()
print(s_resampled)

输出结果为:

2020-01-01     4
2020-01-03     9
2020-01-05    13
2020-01-07     7
dtype: int64

可以看到,resample()函数将原来每天的数据转换为每两天的数据,并求和。

移动窗口

移动窗口是指在时间序列上按照一个固定的窗口大小进行移动,计算每个窗口内的统计量,例如平均值、方差等。Pandas提供了rolling()函数用于移动窗口操作,常用的参数有window、min_periods、center等。例如:

date_str = ['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05', '2020-01-06', '2020-01-07']
data = [1, 2, 3, 4, 5, 6, 7]
s = pd.Series(data, index=pd.to_datetime(date_str))
s_rolling = s.rolling(window=3).mean()
print(s_rolling)

输出结果为:

2020-01-01         NaN
2020-01-02         NaN
2020-01-03    2.000000
2020-01-04    3.000000
2020-01-05    4.000000
2020-01-06    5.000000
2020-01-07    6.000000
dtype: float64

可以看到,rolling()函数计算了每三天的移动平均值,并在每个窗口中心输出一个平均值。

时间偏移

时间偏移是指在时间轴上按照一定规则进行时间的加减,例如加一天、减一月等。Pandas提供了一些时间偏移对象,例如Day、Month、Year等,以及DateOffset对象,用于定义自定义的时间偏移规则。时间偏移可以通过加减运算符来进行操作。例如:

date_str = '2020-01-01'
date = pd.to_datetime(date_str)
date_offset = pd.offsets.MonthEnd()
date_end = date + date_offset
print(date_end)

输出结果为:

2020-01-31 00:00:00

可以看到,代码使用MonthEnd()对象定义了月末时间偏移,然后将2020年1月1日加上月末时间偏移,得到了2020年1月31日。

总结

Pandas的时间序列功能非常强大,能够方便地进行时间序列数据的处理和分析。本文介绍了Pandas的时间序列的生成方法和操作方法,包括时间序列的索引、生成方法和操作方法,例如重采样、移动窗口和时间偏移等。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Pandas中的时间序列 - Python技术站

(1)
上一篇 2023年3月6日
下一篇 2023年3月6日

相关文章

  • python pandas 数据排序的几种常用方法

    Python是一种高效的编程语言,而其中的pandas包是一个非常方便的数据分析工具。pandas可以轻松处理各种数据类型(CSV,Excel,SQL等),并为数据分析提供了很多实用的函数和方法,其中之一就是数据排序。本文将介绍python pandas 数据排序的几种常用方法。 一、排序基础 在pandas中,我们可以使用.sort_values()方法对…

    python 2023年5月14日
    00
  • Pandas 读取txt

    Pandas 是一个强大的 Python 库,可以用于数据处理和分析,并且可以读写各种格式的数据。在这里,我们将讲解使用 Pandas 读取 .txt 文件的完整攻略。 步骤1:导入 Pandas 库 首先,你需要导入 Pandas 库。可以使用以下代码: import pandas as pd 这将导入 Pandas 库,你现在可以使用 Pandas 的所…

    python-answer 2023年3月27日
    00
  • Spark DataFrame和Pandas DataFrame的区别

    Spark DataFrame和Pandas DataFrame都是用来处理数据的工具,但是它们有以下几个方面的不同。 编程语言和计算引擎 Spark DataFrame是使用Scala、Java或Python语言编写的,并由Spark计算引擎执行计算任务。Spark DataFrame被设计用于处理大量数据,并充分利用了分布式计算。 Pandas Data…

    python-answer 2023年3月27日
    00
  • Pandas直接读取sql脚本的方法

    当我们需要从SQL数据库(如MySQL,SQL Server等)中读取数据时,可以使用Python的Pandas库来实现。Pandas库提供了一种方便的方法来读取SQL查询结果并将其转换成DataFrame对象。下面是使用Pandas直接读取SQL脚本的方法: 步骤1:导入必要的库 我们首先需要导入两个库,分别是Pandas和SQLAlchemy。Panda…

    python 2023年5月14日
    00
  • python3.6连接MySQL和表的创建与删除实例代码

    MySQL是一种流行的关系型数据库,而Python是一种功能强大的编程语言。通过Python编写MySQL查询是非常方便的,本文将介绍如何使用Python3.6连接MySQL并创建和删除表格的实例代码。 安装MySQL库 在操作MySQL之前,我们需要先安装运行Python的MySQL库(Python库)。 安装Python的MySQL库 pip insta…

    python 2023年6月13日
    00
  • pandas实现按照多列排序-ascending

    要实现按照多列排序,可以使用pandas的sort_values函数。sort_values函数可以灵活地按照指定列排序,并且可以逆序排序。 sort_values函数的语法格式为: dataframe.sort_values(by, axis=0, ascending=True, inplace=False) 参数说明: by:要排序的列名或者列名的列表 …

    python 2023年5月14日
    00
  • yolov5 win10 CPU与GPU环境搭建过程

    我来讲解一下 “Yolov5 Win10 CPU与GPU环境搭建过程” 的攻略。 环境要求 首先,我们需要满足以下环境要求: Python >= 3.8 Pytorch >= 1.7.0 CUDA >= 10.2(需要GPU环境) cuDNN >= 8.0.4(需要GPU环境) NVIDIA GPU(需要GPU环境) CPU环境搭建 …

    python 2023年5月14日
    00
  • Python Pandas中两个数据框架的交集

    在Pandas中,有几种方法可以计算两个DataFrame对象的交集。 方法一:使用merge()函数 merge()函数是将两个DataFrame对象结合在一起的函数,它可以根据指定的列将两个DataFrame对象合并在一起。 示例: import pandas as pd # 创建df1和df2 DataFrame df1 = pd.DataFrame(…

    python-answer 2023年3月27日
    00

评论列表(1条)

  • Pandas 格式化日期时间 - Python技术站的头像

    […] 在 Pandas 中,我们可以使用 pd.to_datetime() 函数将日期字符串或时间戳转换为 Pandas 的日期时间类型。这在上一篇详解Pandas中的时间序列中有过讲解。 […]

合作推广
合作推广
分享本页
返回顶部