详解Pandas数据重采样(resample)的3种使用方法

Pandas中的resample方法用于对时间序列数据进行重采样,可以将数据从一个时间频率转换为另一个时间频率,比如将日频率的数据转换为月频率的数据。

resample的语法格式如下:

DataFrame.resample(rule, axis=0, closed=None, label=None, convention='start', kind=None, loffset=None, base=None, on=None, level=None, origin='start', offset=None)
参数说明:

  • rule:重采样的规则,例如"5min"表示5分钟,"D"表示天。具体规则可以参考Pandas官方文档。
  • how:对采样到的数据执行聚合操作的函数名或函数对象。例如"sum"、"mean"、"median"等。默认为None,表示不进行聚合操作。
  • axis:指定重采样的轴,0表示行轴,1表示列轴。默认为0。
  • fill_method:填充缺失值的方法,例如"ffill"、"bfill"等。默认为None,表示不填充缺失值。
  • closed:在重采样过程中,区间闭合的位置,例如"left"、"right"等。默认为None,表示使用默认值。
  • label:在重采样过程中,区间闭合位置的标签,例如"left"、"right"等。默认为None,表示使用默认值。
  • convention:在重采样过程中,指定重采样区间的位置是左边界还是右边界。默认为"start",表示使用左边界。
  • kind:在重采样过程中,指定返回的对象类型,例如"period"、"timestamp"等。默认为None,表示使用默认类型。
  • loffset:在重采样过程中,为重采样的时间序列添加偏移量。
  • limit:在重采样过程中,限制填充缺失值的连续次数。
  • base:在重采样过程中,指定重采样区间的基准点。
  • on:指定使用哪一列进行重采样。只有在DataFrame对象中使用才有用。
  • level:在MultiIndex对象中,指定要重采样的级别。

其中,最重要的参数是rule,表示重采样的规则,可以是一个字符串或pandas.tseries.offsets.DateOffset对象。同时,也可以使用其他参数进行更细致的控制。

下面通过几个例子来介绍resample的使用方法。

降采样:resample 将日频率数据转换为月频率数据

import pandas as pd
import numpy as np

# 创建一组日频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='D')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 将日频率数据转换为月频率数据
df.resample('M').mean()

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的日频率数据,然后将这组数据转换为月频率数据,并求出每个月的平均值。

升采样:resample 将秒频率数据转换为分钟频率数据

import pandas as pd
import numpy as np

# 创建一组秒频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='S')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 将秒频率数据转换为分钟频率数据
df.resample('1Min').sum()

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的秒频率数据,然后将这组数据转换为分钟频率数据,并求出每分钟的总和。

聚合采样:使用自定义函数进行重采样

import pandas as pd
import numpy as np

# 创建一组月频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='M')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 定义一个自定义函数
def custom_resampler(array_like):
    return np.sum(array_like) + 5

# 使用自定义函数进行重采样
df.resample('A').apply(custom_resampler)

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的月频率数据,然后使用自定义函数custom_resampler对数据进行重采样,并将结果按年进行聚合。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Pandas数据重采样(resample)的3种使用方法 - Python技术站

(1)
上一篇 2023年3月6日
下一篇 2023年3月6日

相关文章

  • 对Pandas MultiIndex(多重索引)详解

    对Pandas MultiIndex(多重索引)详解 在 Pandas 中,MultiIndex 是一种针对具有多个级别的 Series 或 DataFrame 提供索引的技术。如果你的数据集中存在多个维度,那么你可能需要使用 MultiIndex 进行数据处理和分析。本文将介绍 MultiIndex 的相关知识以及其重要性和实用性。 什么是 MultiIn…

    python 2023年5月14日
    00
  • pandas如何将datetime64[ns]转为字符串日期

    将datetime64[ns]类型转为字符串日期,可以使用pandas中的strftime函数。 strftime函数可以将时间日期格式化为字符串。 下面是完整的攻略: 读取数据并将日期列的格式转换为datetime64[ns]类型 “`python import pandas as pd df = pd.read_csv(‘data.csv’) df[‘…

    python 2023年5月14日
    00
  • 如何在Pandas Groupby中把数据框架的行分组到列表中

    在Pandas中的Groupby操作,可以把数据框架中的行或者列分组,然后对分组后的数据进行聚合,统计分析等操作。但是,在实际的应用场景中,有时候需要把分组后的数据框架中的行分别保存到一个列表中。下面是针对这个需求的详细讲解。 首先,我们可以通过Pandas中的Groupby函数对数据进行分组。例如,下面的例子中我们按照“B”列的值进行分组。 import …

    python-answer 2023年3月27日
    00
  • Pandas中根据条件替换列中的值的四种方式

    下面我详细讲解一下“Pandas中根据条件替换列中的值的四种方式”的完整攻略。 1. 使用.loc方法进行条件替换 DataFrame.loc[]方法可以通过布尔型的条件对DataFrame对象进行赋值操作。 先来看一个示例,我们可以使用下面的代码创建一个简单的DataFrame对象,该对象包含两列数据name和age: import pandas as p…

    python 2023年5月14日
    00
  • 在Pandas中应用LEFT, RIGHT, MID的方法

    在Pandas中,可以使用Series.str方法结合LEFT、RIGHT和MID函数来提取字符串中的部分信息,例如提取姓名、数字等等。 首先,LEFT函数可以提取字符串的左侧若干个字符,其语法为LEFT(string, num_chars),其中string为待提取的字符串,num_chars为提取的字符数。例如: import pandas as pd …

    python-answer 2023年3月27日
    00
  • pandas实现按照多列排序-ascending

    要实现按照多列排序,可以使用pandas的sort_values函数。sort_values函数可以灵活地按照指定列排序,并且可以逆序排序。 sort_values函数的语法格式为: dataframe.sort_values(by, axis=0, ascending=True, inplace=False) 参数说明: by:要排序的列名或者列名的列表 …

    python 2023年5月14日
    00
  • python 操作hive pyhs2方式

    Python 可以通过 pyhs2 包在 Hive 中执行查询、创建表、插入数据等操作,下面是详细的操作步骤: 1. 安装 pyhs2 首先需要在本地安装 pyhs2 包,可以通过 pip 命令来安装: pip install pyhs2 2. 建立连接 使用 pyhs2 包建立到 Hive 的连接,需要提供连接 Hive 的主机名、端口号、用户名、密码等信…

    python 2023年6月13日
    00
  • 如何堆叠多个Pandas数据帧

    堆叠多个Pandas数据帧可以使用Pandas库中的concat()函数。该函数可以接受多个数据帧并沿着指定轴将它们堆叠起来。具体步骤如下: 创建数据帧 首先需要创建多个数据帧用于堆叠。这里以两个简单的例子为例,分别创建包含3行2列和2行2列数据的数据帧df1和df2: import pandas as pd df1 = pd.DataFrame({‘X’:…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部