详解Pandas数据重采样(resample)的3种使用方法

Pandas中的resample方法用于对时间序列数据进行重采样,可以将数据从一个时间频率转换为另一个时间频率,比如将日频率的数据转换为月频率的数据。

resample的语法格式如下:

DataFrame.resample(rule, axis=0, closed=None, label=None, convention='start', kind=None, loffset=None, base=None, on=None, level=None, origin='start', offset=None)
参数说明:

  • rule:重采样的规则,例如"5min"表示5分钟,"D"表示天。具体规则可以参考Pandas官方文档。
  • how:对采样到的数据执行聚合操作的函数名或函数对象。例如"sum"、"mean"、"median"等。默认为None,表示不进行聚合操作。
  • axis:指定重采样的轴,0表示行轴,1表示列轴。默认为0。
  • fill_method:填充缺失值的方法,例如"ffill"、"bfill"等。默认为None,表示不填充缺失值。
  • closed:在重采样过程中,区间闭合的位置,例如"left"、"right"等。默认为None,表示使用默认值。
  • label:在重采样过程中,区间闭合位置的标签,例如"left"、"right"等。默认为None,表示使用默认值。
  • convention:在重采样过程中,指定重采样区间的位置是左边界还是右边界。默认为"start",表示使用左边界。
  • kind:在重采样过程中,指定返回的对象类型,例如"period"、"timestamp"等。默认为None,表示使用默认类型。
  • loffset:在重采样过程中,为重采样的时间序列添加偏移量。
  • limit:在重采样过程中,限制填充缺失值的连续次数。
  • base:在重采样过程中,指定重采样区间的基准点。
  • on:指定使用哪一列进行重采样。只有在DataFrame对象中使用才有用。
  • level:在MultiIndex对象中,指定要重采样的级别。

其中,最重要的参数是rule,表示重采样的规则,可以是一个字符串或pandas.tseries.offsets.DateOffset对象。同时,也可以使用其他参数进行更细致的控制。

下面通过几个例子来介绍resample的使用方法。

降采样:resample 将日频率数据转换为月频率数据

import pandas as pd
import numpy as np

# 创建一组日频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='D')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 将日频率数据转换为月频率数据
df.resample('M').mean()

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的日频率数据,然后将这组数据转换为月频率数据,并求出每个月的平均值。

升采样:resample 将秒频率数据转换为分钟频率数据

import pandas as pd
import numpy as np

# 创建一组秒频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='S')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 将秒频率数据转换为分钟频率数据
df.resample('1Min').sum()

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的秒频率数据,然后将这组数据转换为分钟频率数据,并求出每分钟的总和。

聚合采样:使用自定义函数进行重采样

import pandas as pd
import numpy as np

# 创建一组月频率数据
date_rng = pd.date_range(start='1/1/2022', end='1/10/2022', freq='M')
df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(0,100,size=(len(date_rng)))
df = df.set_index('date')

# 定义一个自定义函数
def custom_resampler(array_like):
    return np.sum(array_like) + 5

# 使用自定义函数进行重采样
df.resample('A').apply(custom_resampler)

上述代码中,通过pd.date_range方法生成了一组从2022年1月1日到2022年1月10日的月频率数据,然后使用自定义函数custom_resampler对数据进行重采样,并将结果按年进行聚合。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Pandas数据重采样(resample)的3种使用方法 - Python技术站

(1)
上一篇 2023年3月6日
下一篇 2023年3月6日

相关文章

  • 如何在Pandas中读取一个文件夹中的所有CSV文件

    在Pandas中,我们可以使用read_csv()函数来读取CSV文件。为了读取文件夹中所有的CSV文件,我们需要使用Python的os库来获取文件夹中所有CSV文件的路径,并使用循环遍历路径列表,依次读取每个CSV文件。 下面是示例代码,演示如何读取文件夹中的所有CSV文件,并将它们合并成一个Pandas数据框: import os import pand…

    python-answer 2023年3月27日
    00
  • 合并两个具有相同列名的数据框架

    如果要合并两个具有相同列名的数据框架,可以使用R语言中的merge()函数。下面将给出详细的完整攻略。 步骤1:准备数据框架 首先需要准备两个数据框架,它们应该有相同的列名,数量可以不同,但是列名应该至少有一个是相同的。这里给出两个示例数据框架: df1 <- data.frame( name = c("Alice", "…

    python-answer 2023年3月27日
    00
  • python使用xlsx和pandas处理Excel表格的操作步骤

    下面就来详细讲解一下“Python使用xlsx和pandas处理Excel表格的操作步骤”的完整攻略。 1. 安装所需的库 首先需要安装所需的库,包括 xlsxwriter 和 pandas,你可以使用以下命令在命令行中安装: pip install pandas xlsxwriter 2. 读取Excel文件 读取Excel文件可以使用 pandas 库中…

    python 2023年5月14日
    00
  • 在Pandas-Dataframe中获取行或列的最小值及其索引位置

    获取Pandas-DataFrame中行或列的最小值及其索引位置的攻略如下: 获取行最小值及其索引位置 使用DataFrame.min()方法获取DataFrame每列的最小值,再使用Series.min()方法获取最小值,最后使用Series.idxmin()方法获取最小值的索引位置。 示例代码如下: import pandas as pd # 创建Dat…

    python-answer 2023年3月27日
    00
  • 在Pandas DataFrame中应用if条件的方法

    当我们需要根据某些条件对Pandas DataFrame中的数据进行筛选或操作时,就需要使用到if条件语句。在Pandas DataFrame中应用if条件有多种方法,下面分别介绍其中的两种常用方法,包括: 使用DataFrame的loc方法结合条件语句进行操作; 使用Pandas函数中的where方法结合条件语句进行操作。 方法1. 使用DataFrame…

    python-answer 2023年3月27日
    00
  • Pandas透视表(pivot_table)详解

    Pandas透视表(pivot_table)详解 Pandas中的透视表是一种可以从标准数据帧(DataFrame)中提取信息的灵活工具。您可以使用 pivot table 实现多维数据的聚合,并以各种方式对其进行查看。在本篇文章中,我将为您提供 pivot_table 的详细介绍,包括实现透视表所需的核心参数以及一些示例代码。 pivot_table 函数…

    python 2023年5月14日
    00
  • Python3字符串encode与decode的讲解

    Python3字符串encode与decode的完整攻略 在Python3中,字符串的encode()和decode()是两个常用的方法,它们可以用来将字符串转换为不同的编码格式。在本文中,我们将介绍字符串的编码和解码,讲解这两个方法的用法,并提供两个示例来演示它们的具体应用。 字符编码 在计算机中,字符常常用二进制表示。但不同的国家或地区可能采用不同的二进…

    python 2023年5月14日
    00
  • 寻找Pandas数据框架列的四分位数和十分位数等级

    要寻找一个Pandas数据框架列的四分位数和十分位数等级,可以依次执行以下步骤: 1. 导入Pandas库 import pandas as pd 2. 创建数据框架 本次实例中,我们可以使用Seaborn库自带的Iris数据集作为示例数据,具体代码如下: import seaborn as sns iris = sns.load_dataset(‘iris…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部