Pandas reindex重置索引的4种方法

Pandas的reindex()方法可以用来重新排列DataFrame或Series的索引,并返回一个具有新索引的新对象。reindex()方法有以下几种常用的用法:

Series.reindex()

Series.reindex()方法用于Series类型,可以根据给定的索引值重新排列Series的索引。当索引值在原Series中不存在时,对应的值会被填充为NaN。

示例代码:

import pandas as pd
import numpy as np

s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s_reindex = s.reindex(['a', 'b', 'c', 'd'])
print(s_reindex)

DataFrame.reindex()

DataFrame.reindex()方法用于DataFrame类型,可以根据给定的行索引和列索引值重新排列DataFrame的行索引和列索引。当行索引值或列索引值在原DataFrame中不存在时,对应的值会被填充为NaN。

示例代码:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['a', 'b', 'c'])
df_reindex = df.reindex(index=['a', 'b', 'c', 'd'], columns=['A', 'B', 'C'])
print(df_reindex)

输出结果:

     A    B   C
a  1.0  4.0 NaN
b  2.0  5.0 NaN
c  3.0  6.0 NaN
d  NaN  NaN NaN

Series.reindex_like()

Series.reindex_like()方法用于将一个Series的索引与另一个Series的索引对齐,并返回一个新的Series对象。当新Series的索引值在原Series中不存在时,对应的值会被填充为NaN。

示例代码:

import pandas as pd
import numpy as np

s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
s2 = pd.Series([4, 5, 6], index=['a', 'c', 'd'])
s_reindex = s1.reindex_like(s2)
print(s_reindex)

输出结果:

a    1.0
c    3.0
d    NaN
dtype: float64

DataFrame.reindex_like()

DataFrame.reindex_like()方法用于将一个DataFrame的行索引和列索引与另一个DataFrame的行索引和列索引对齐,并返回一个新的DataFrame对象。当新DataFrame的行索引值或列索引值在原DataFrame中不存在时,对应的值会被填充为NaN。

示例代码:

import pandas as pd

# 创建原始的DataFrame对象
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['a', 'b', 'c'])

# 创建目标的DataFrame对象
df2 = pd.DataFrame({'A': [7, 8], 'B': [9, 10]}, index=['d', 'e'])

# 使用df2的索引重置df1的索引
df3 = df1.reindex_like(df2)

print(df3)

输出结果:

     A    B
d  NaN  NaN
e  NaN  NaN

在上面的代码中,我们首先创建了一个原始的DataFrame对象df1,包含两个列A和B,索引为a、b、c。然后,我们创建了一个目标的DataFrame对象df2,包含两个列A和B,索引为d、e。最后,我们使用df2的索引重置df1的索引,并将结果存储在df3中。

在输出结果中,我们可以看到df3是一个具有相同形状的新DataFrame对象,其索引为d、e,而数据为空值。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas reindex重置索引的4种方法 - Python技术站

(1)
上一篇 2023年3月4日
下一篇 2023年3月4日

相关文章

  • 浅析pandas随机排列与随机抽样

    浅析pandas随机排列与随机抽样 1. pandas随机排列 pandas提供了一个sample()方法来对DataFrame和Series进行随机排列。sample()方法接受一个整数参数n,表示随机抽取的数量,默认为1,也可以为float类型,表示百分比。以下示例展示如何对DataFrame进行随机排列: import pandas as pd df …

    python 2023年5月14日
    00
  • pandas.loc 选取指定列进行操作的实例

    下面详细讲解一下如何使用 pandas.loc 选取指定列进行操作的实例,包括两条示例说明。 1. pandas.loc 选取指定列进行操作的基本方法 pandas.loc 方法主要用于对 DataFrame 中的数据进行选取、过滤和操作。我们可以使用 loc 方法对指定列进行操作,具体步骤如下: 步骤 1. 读取数据 首先我们需要读取数据,这里我们以一份 …

    python 2023年6月13日
    00
  • 使用Pandas apply()方法返回多列数据

    Pandas是Python中一个非常流行的数据处理和分析库,也是数据分析中不可或缺的组件之一。在使用Pandas的过程中,我们常常需要进行一些复杂的数据转换和处理操作。Pandas提供了很多灵活和强大的方法和函数,其中之一就是apply()方法。apply()方法可以接受一个自定义的函数,并且可以返回多列数据。本文就详细讲解如何使用apply()方法返回多列…

    python-answer 2023年3月27日
    00
  • Pandas 使用Python生成时间戳的范围

    生成时间戳的范围在时间序列分析中非常常见,Pandas提供了多种方法来生成时间戳范围。以下是使用Python和Pandas生成时间戳范围的完整攻略。 1. 导入必要的库 在使用Pandas生成时间戳范围之前,需要导入必要的库。除了Pandas之外,我们还需要Datetime库来生成日期范围。 import pandas as pd import dateti…

    python-answer 2023年3月27日
    00
  • 按行拆分Pandas数据框架

    按行拆分Pandas数据框架指将原本一行数据拆分成多个行数据。以下是按行拆分Pandas数据框架的完整攻略: 准备工作 在开始按行拆分Pandas数据框架之前,我们需要先引入Pandas库,并读取待处理的数据文件。下面是一个读取csv文件的示例: import pandas as pd # 读取csv文件 df = pd.read_csv("dat…

    python-answer 2023年3月27日
    00
  • Python Pandas.factorize()

    让我们来详细讲解Python Pandas.factorize()方法的完整攻略。 一、Pandas.factorize()方法介绍 Pandas.factorize()方法用于将一列中的离散型数据转换成连续的数值型数据。它返回一个元组,包含两个数组,第一个数组是每个唯一值的编码,第二个数组是唯一的、有序的值。 二、Pandas.factorize()方法使…

    python-answer 2023年3月27日
    00
  • python 用Matplotlib作图中有多个Y轴

    当需要在一个图中,将两个或以上的不同的 Y 轴进行同步展示时,可以借助 Matplotlib 库实现。以下是实现方法的完整攻略。 1. 导入 Matplotlib 库 import matplotlib.pyplot as plt 2. 新建画布和子图 figsize 参数用于设置画布的大小 constrained_layout 参数可以使图表自动调整大小,…

    python 2023年6月14日
    00
  • 如何从Pandas DataFrame中获取单元格值

    获取Pandas DataFrame中单元格的值通常需要使用DataFrame的loc和iloc方法。 1. loc方法 loc方法一般用于使用行和列的名称获取单元格值。可以按以下格式使用loc方法: DataFrame.loc[row_label, column_label] 其中,row_label表示行标签,column_label表示列标签。可以使用…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部