Pandas – 合并两个具有不同列的数据框架

当我们需要整合不同数据源、不同数据集时,常常需要进行数据框架间的合并。在Pandas中,通过merge()函数可以较为方便地实现数据框架间的合并。在两个具有不同列的数据框架合并时,我们需要注意以下几个方面:

  1. 合并键:在两个数据框架合并的过程中,我们需要指定合并键。合并键可以是某一个或某几个相同的标识符,将数据框架按照这个标识符进行合并。在指定合并键时,需要注意确保被合并的两个数据框架的相应列都存在这个标识符。

  2. 合并方式:在merge()函数中,我们需要指定合并方式。默认情况下,merge()函数使用inner(内连接)方式进行合并,即只保留两个数据框架中都存在的行。除此之外,merge()函数还支持left、right和outer等多种合并方式。

  3. 重复列名:当两个被合并的数据框架中存在相同列名的列时,我们需要在合并时进行重新命名这些列的操作。可以通过suffixes参数来指定重命名的方式,例如suffixes=('_1', '_2'),表示在两个数据框架中存在相同列名的列上,分别加上"_1"和"_2"后缀,以区分这两列。

接下来,我们以一个实例来讲解合并两个具有不同列的数据框架:

假设我们有两个数据框架,df1和df2,它们的部分数据如下:

import pandas as pd

df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})

df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})

其中,df1包含了'A'和'B'两列,df2包含了'C'和'D'两列。我们需要将这两个数据框架合并,得到一个包含所有列的新数据框架。

merged_df = pd.merge(df1, df2, on='key')
print(merged_df)

上述代码中,首先使用pd.merge()函数,将df1和df2按照'key'列进行内连接合并。由于两个数据框架中都存在'key'列,所以可以使用on参数指定合并键。

得到的合并结果如下:

  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

可以看到,得到的新数据框架包含了所有列。

此外,如果存在重复列名的情况,我们还需要进行重命名。例如:

df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})

df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                    'B': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})

merged_df = pd.merge(df1, df2, on='key', suffixes=('_left', '_right'))
print(merged_df)

由于df1和df2中都存在'B'列,因此需要使用suffixes参数将这些列进行重新命名。执行结果如下:

  key   A B_left B_right   D
0  K0  A0     B0      C0  D0
1  K1  A1     B1      C1  D1
2  K2  A2     B2      C2  D2
3  K3  A3     B3      C3  D3

可以看到,新数据框架中的'B'列被重命名为'B_left'和'B_right',以区分这两列。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas – 合并两个具有不同列的数据框架 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 如何在Pandas Groupby中把数据框架的行分组到列表中

    在Pandas中的Groupby操作,可以把数据框架中的行或者列分组,然后对分组后的数据进行聚合,统计分析等操作。但是,在实际的应用场景中,有时候需要把分组后的数据框架中的行分别保存到一个列表中。下面是针对这个需求的详细讲解。 首先,我们可以通过Pandas中的Groupby函数对数据进行分组。例如,下面的例子中我们按照“B”列的值进行分组。 import …

    python-answer 2023年3月27日
    00
  • Python pandas求方差和标准差的方法实例

    了解你要求的内容,我将给出“Python pandas求方差和标准差的方法实例”的详细攻略。 1. 关于Pandas Pandas是一种开源的数据分析和处理工具。它提供了一组简单易用的数据结构和函数,可以大大简化我们的数据分析和处理过程。其中包括了非常多的统计学方法和函数。 2. 求方差和标准差 方差与标准差都是描述数据分散程度的统计量。方差描述数据偏离其平…

    python 2023年5月14日
    00
  • 如何在Python-Pandas中把数据框架列转换成索引

    要在Python-Pandas中把数据框架列转换成索引,可以使用 set_index() 函数。该函数可将给定的一列或多列转化成索引,并返回一个新的数据帧。以下是详细步骤: 安装Pandas库: 如果你的环境中没有安装Pandas库,需要先安装。可以使用以下命令: !pip install pandas 导入Pandas库: import pandas as…

    python-answer 2023年3月27日
    00
  • 如何在 Python 中处理分类变量的缺失值

    在 Python 中处理分类变量的缺失值,我们可以采用以下两种方法: 删除缺失值 可以选择删除所有含有缺失值的行或列。这种方法非常简单,但也容易导致数据量减少或者信息丢失的问题。如果数据集较大或者缺失值数量不多,可以采用该方法。 在 Pandas 中使用 dropna() 函数可以实现该功能。下面是一个示例: import pandas as pd # 读取…

    python-answer 2023年3月27日
    00
  • 在连接两个Pandas数据框架时防止重复的列

    在连接两个Pandas数据框架时,如果两个数据框架中的列名重复,那么连接时可能会出现一些问题,比如连接后的数据框架中的列名不好区分或者连接出来的结果不正确等。因此,我们需要防止列名重复。有以下几种方法可以实现: 重命名列名:在连接之前,可以对一个或两个数据框架的列名进行重命名,从而确保连接时不会出现列名重复的情况。可以使用Pandas的rename方法来实现…

    python-answer 2023年3月27日
    00
  • 基于Python的Houdini插件开发过程详情

    基于Python的Houdini插件开发过程详情 什么是Houdini Houdini是一款由加拿大SideFX公司开发的3D计算机图形软件,有着强大的节点图和编程能力,被广泛应用于影视制作、游戏开发、建筑设计等领域。 Houdini插件开发 Houdini支持使用Python编写插件,开发插件可以让用户快速自定义工具,并且可以将自定义工具分享到Houdin…

    python 2023年6月13日
    00
  • pd.drop_duplicates删除重复行的方法实现

    pd.drop_duplicates删除重复行的方法实现 如果你在数据处理的过程中遇到了重复的行,那么你可以使用pd.drop_duplicates()方法来删除这些行。 语法格式 DataFrame.drop_duplicates([subset=None, keep=’first’, inplace=False]) 参数说明: subset:用来指定需要…

    python 2023年6月13日
    00
  • Python进行数据科学工作的简单入门教程

    Python进行数据科学工作的简单入门教程 简介 Python是一种非常流行的编程语言,因为它具有直观的语法和丰富的库。Python成为数据科学领域中的一种热门语言,因为有许多数据处理和分析工具可以帮助数据科学家进行数据探索,数据可视化和数据建模等任务。在本教程中,我们将介绍如何使用Python进行数据科学工作。 内容 安装Python和必备数据科学库 数据…

    python 2023年6月13日
    00
合作推广
合作推广
分享本页
返回顶部