Pandas Groupby:在Python中对数据进行汇总、聚合和分组

Pandas Groupby是一种在Python中对数据进行汇总、聚合和分组的技术。使用该技术可以根据某个或某些字段对数据进行分组,然后对组内的数据进行聚合操作。

按单个字段分组

Pandas中的groupby方法非常灵活,可以根据不同的参数进行分组。最常见的分组是按单个字段进行分组,示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名进行分组,并求每个人的平均成绩
avg_scores = grades.groupby('name')['score'].mean()
print(avg_scores)

输出结果如下:

name
Bob      92.5
Joe      82.5
Sally    72.5
Name: score, dtype: float64

以上代码中,我们先定义了一个包含成绩信息的DataFrame,然后使用groupby('name')方法按照学生的姓名进行分组,并计算每个学生的平均成绩。最后输出的是每个学生的平均成绩。

按多个字段分组

除了按单个字段进行分组,Pandas还可以按多个字段进行分组。示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名和科目进行分组,并求每个人在每个科目的平均成绩
avg_scores = grades.groupby(['name', 'subject'])['score'].mean()
print(avg_scores)

输出结果如下:

name    subject
Bob     Math       90
        English    95
Joe     English    85
        Math       80
Sally   English    75
        Math       70
Name: score, dtype: int64

以上代码中,我们使用groupby(['name', 'subject'])方法先按姓名进行分组,然后再在每个组内按照科目进行分组,最后求每个人在每个科目的平均成绩。

聚合操作

在分组后,我们可以对每个组进行聚合操作,例如求和、求平均、求最大值等等。示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名进行分组,并求每个人的总成绩、平均成绩、最高分和最低分
agg_scores = grades.groupby('name')['score'].agg(['sum', 'mean', 'max', 'min'])
print(agg_scores)

输出结果如下:

       sum  mean  max  min
name                     
Bob    185    92   95   90
Joe    165    82   85   80
Sally  145    72   75   70

以上代码中,我们使用agg(['sum', 'mean', 'max', 'min'])方法对每个分组进行聚合,返回每个分组的总成绩、平均成绩、最高分和最低分。最后输出的是每个学生的总成绩、平均成绩、最高分和最低分。

筛选操作

在分组后,我们可以对每个组进行筛选操作,例如选择成绩最高的学生。示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名进行分组,选择每个分组中成绩最高的学生
top_scores = grades.groupby('name').apply(lambda x: x.iloc[x['score'].argmax()])
print(top_scores)

输出结果如下:

        name  subject  score
name                       
Bob      Bob  English     95
Joe      Joe  English     85
Sally  Sally    Math     70

以上代码中,我们使用apply方法对每个分组进行筛选,选择每个分组中成绩最高的学生。最后输出的是每个学生中成绩最高的科目和成绩。

总结

通过以上示例,我们看到了Pandas Groupby的强大之处,它可以对数据进行灵活的汇总、聚合和分组操作,满足各种数据分析需求。在实际应用中,我们可以根据具体情况选用不同的分组方式和聚合操作,最终得到需要的结果。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas Groupby:在Python中对数据进行汇总、聚合和分组 - Python技术站

(2)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 详解Python如何实现批量为PDF添加水印

    下面是详解Python如何实现批量为PDF添加水印的完整攻略: 准备工作 首先要安装必要的Python包:PyPDF2。可以使用以下命令进行安装: pip install PyPDF2 读取PDF文件 使用PyPDF2包中的PdfFileReader类,打开需要添加水印的PDF文件,可以使用以下代码: import PyPDF2 pdf = PyPDF2.P…

    python 2023年6月13日
    00
  • Python引用(import)文件夹下的py文件的方法

    当我们想要在一个Python文件中引用(import)文件夹下的其他.py文件时,有以下几种方法: 方法一:使用sys.path.append()添加路径 首先需要用sys.path.append()将该文件夹的路径添加到Python的搜索路径中,这样才能让Python找到该文件夹下的.py文件。在本例中,假设我们想要引用文件夹 file夹 下的py文件 m…

    python 2023年5月14日
    00
  • 利用Python计算KS的实例详解

    让我们来详细讲解一下“利用Python计算KS的实例详解”。 简介 Kolmogorov-Smirnov检验(KS Test)是一种用于检验样本是否来自某个分布的非参数统计方法。在Python中,我们可以利用Scipy库中的ks_2samp函数快速地进行KS检验。 前置知识 在学习本文之前,需要掌握Python的基础语法和Scipy库的使用方法。 实例详解 …

    python 2023年5月14日
    00
  • 如何在Pandas中计算以月为单位的Timedelta

    计算以月为单位的 Timedelta 是 Pandas 中比较常见的需求,但是由于月的天数不一致,因此需要特定的计算方法。以下是在 Pandas 中计算以月为单位的 Timedelta 的完整攻略: 1. 创建数据 首先,我们需要创建一个包含两个日期的数据,作为计算 Timedelta 的基础。以下是一个示例数据: import pandas as pd d…

    python-answer 2023年3月27日
    00
  • pandas通过loc生成新的列方法

    Pandas是Python中用于数据处理和分析的强大工具,通过使用loc方法,可以生成新的列。下面是通过loc生成新的列方法的完整攻略: 步骤1: 导入pandas模块 首先需要导入pandas模块 import pandas as pd 步骤2: 创建DataFrame 接下来创建一个包含数据的DataFrame data = {‘name’:[‘Tom’…

    python 2023年5月14日
    00
  • python处理数据,存进hive表的方法

    Python处理数据并存储到Hive表中的方法主要有以下几个步骤: 连接Hive Hive是基于Hadoop的一个数据仓库工具,它可以将结构化数据文件映射为一张数据库表,并提供简单的sql查询功能。因此,在进行Python处理数据并存储到Hive表中之前,首先需要连接Hive。 可以使用pyhive库来连接Hive。以下是连接Hive的示例代码: from …

    python 2023年6月13日
    00
  • pandas 对series和dataframe进行排序的实例

    下面是关于“pandas对series和dataframe进行排序的实例”的完整攻略: 1. Series排序实例 1.1 构建Series对象 首先我们需要构建一个Series对象,假设我们有一个学生成绩的列表,其中包括语文、数学和英语三个科目的成绩,我们可以使用pandas的Series对象来保存这些数据: import pandas as pd sco…

    python 2023年5月14日
    00
  • 从python读取sql的实例方法

    以下是从Python读取SQL的完整攻略: 1. 安装相关依赖 要使用Python读取SQL,需要安装相关依赖库。常用的是pymysql和pyodbc。在终端内输入如下命令安装pymysql和pyodbc库: pip install pymysql pip install pyodbc 2. 连接数据库 在Python中连接SQL数据库需要先定义数据库连接参…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部