Pandas Groupby:在Python中对数据进行汇总、聚合和分组

Pandas Groupby是一种在Python中对数据进行汇总、聚合和分组的技术。使用该技术可以根据某个或某些字段对数据进行分组,然后对组内的数据进行聚合操作。

按单个字段分组

Pandas中的groupby方法非常灵活,可以根据不同的参数进行分组。最常见的分组是按单个字段进行分组,示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名进行分组,并求每个人的平均成绩
avg_scores = grades.groupby('name')['score'].mean()
print(avg_scores)

输出结果如下:

name
Bob      92.5
Joe      82.5
Sally    72.5
Name: score, dtype: float64

以上代码中,我们先定义了一个包含成绩信息的DataFrame,然后使用groupby('name')方法按照学生的姓名进行分组,并计算每个学生的平均成绩。最后输出的是每个学生的平均成绩。

按多个字段分组

除了按单个字段进行分组,Pandas还可以按多个字段进行分组。示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名和科目进行分组,并求每个人在每个科目的平均成绩
avg_scores = grades.groupby(['name', 'subject'])['score'].mean()
print(avg_scores)

输出结果如下:

name    subject
Bob     Math       90
        English    95
Joe     English    85
        Math       80
Sally   English    75
        Math       70
Name: score, dtype: int64

以上代码中,我们使用groupby(['name', 'subject'])方法先按姓名进行分组,然后再在每个组内按照科目进行分组,最后求每个人在每个科目的平均成绩。

聚合操作

在分组后,我们可以对每个组进行聚合操作,例如求和、求平均、求最大值等等。示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名进行分组,并求每个人的总成绩、平均成绩、最高分和最低分
agg_scores = grades.groupby('name')['score'].agg(['sum', 'mean', 'max', 'min'])
print(agg_scores)

输出结果如下:

       sum  mean  max  min
name                     
Bob    185    92   95   90
Joe    165    82   85   80
Sally  145    72   75   70

以上代码中,我们使用agg(['sum', 'mean', 'max', 'min'])方法对每个分组进行聚合,返回每个分组的总成绩、平均成绩、最高分和最低分。最后输出的是每个学生的总成绩、平均成绩、最高分和最低分。

筛选操作

在分组后,我们可以对每个组进行筛选操作,例如选择成绩最高的学生。示例如下:

import pandas as pd

# 假设有一个学生成绩表,包含学生姓名,科目和成绩
grades = pd.DataFrame({'name': ['Joe', 'Sally', 'Bob', 'Joe', 'Sally', 'Bob'],
                       'subject': ['Math', 'Math', 'Math', 'English', 'English', 'English'],
                       'score': [80, 70, 90, 85, 75, 95]})

# 按姓名进行分组,选择每个分组中成绩最高的学生
top_scores = grades.groupby('name').apply(lambda x: x.iloc[x['score'].argmax()])
print(top_scores)

输出结果如下:

        name  subject  score
name                       
Bob      Bob  English     95
Joe      Joe  English     85
Sally  Sally    Math     70

以上代码中,我们使用apply方法对每个分组进行筛选,选择每个分组中成绩最高的学生。最后输出的是每个学生中成绩最高的科目和成绩。

总结

通过以上示例,我们看到了Pandas Groupby的强大之处,它可以对数据进行灵活的汇总、聚合和分组操作,满足各种数据分析需求。在实际应用中,我们可以根据具体情况选用不同的分组方式和聚合操作,最终得到需要的结果。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas Groupby:在Python中对数据进行汇总、聚合和分组 - Python技术站

(2)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 使用 Python 获取 Linux 系统信息的代码

    获取Linux系统信息是一个很常用的操作,因为我们需要了解我们使用的操作系统的状态和配置。下面是使用Python获取Linux系统信息的完整攻略: 开始 首先,我们需要在Linux系统上安装Python。如果你的系统上已经安装了Python,则可以直接跳过这一步。如果你的系统没有安装Python,请使用以下命令安装: sudo apt-get update …

    python 2023年5月14日
    00
  • 如何在 Julia 中安装 Pandas 包

    在 Julia 中安装 Pandas 包需要执行以下步骤: 打开 Julia 终端,进入 Pkg REPL。 可以通过在终端中输入 ] 进入 Pkg REPL。 安装 PyCall 包。 PyCall 包是用于在 Julia 中调用 Python 包的接口。在 Pkg REPL 界面输入以下命令进行安装: add PyCall 在 Julia 中运行 Pyt…

    python-answer 2023年3月27日
    00
  • Pandas – 填补分类数据中的NaN

    为了能够更好地解释如何填补分类数据中的NaN,在这里我将先简单地介绍Pandas。 Pandas是Python中专门用于数据分析的库,它是由NumPy开发而来,可以看作是NumPy的扩展库。Pandas提供了两个重要的数据类型:Series和DataFrame。其中Series表示列,DataFrame表示表格。Pandas支持对数据的处理、清理、切片、聚合…

    python-answer 2023年3月27日
    00
  • Pandas提高数据分析效率的13个技巧汇总

    引言 在数据分析的过程中,Pandas 是一款非常实用而又广泛应用的数据处理工具。本文将介绍 13 个利用 Pandas 提高数据分析效率的技巧,从而可以使数据分析的过程更加高效。这些技巧主要包括: 使用 Pandas 读取不同格式的数据文件 数据预处理:空值、重复值、异常值处理 数据切片和索引 数据排序 数据分组与聚合 数据合并 时间序列处理 可视化 数据…

    python 2023年5月14日
    00
  • 用Python Pandas操纵数据框架

    下面是详细讲解用Python Pandas操纵数据框架 的完整攻略,过程中实例说明: 什么是Pandas Pandas是一个开源数据分析工具,提供了大量高级数据结构和数据分析工具。其中,最重要的是DataFrame数据结构,可以方便、快捷的进行数据的清洗、转换、统计、分组、排序等一系列操作。 安装Pandas 使用pip命令安装Pandas即可: pip i…

    python-answer 2023年3月27日
    00
  • 合并两个具有相同列名的数据框架

    如果要合并两个具有相同列名的数据框架,可以使用R语言中的merge()函数。下面将给出详细的完整攻略。 步骤1:准备数据框架 首先需要准备两个数据框架,它们应该有相同的列名,数量可以不同,但是列名应该至少有一个是相同的。这里给出两个示例数据框架: df1 <- data.frame( name = c("Alice", "…

    python-answer 2023年3月27日
    00
  • Python+Empyrical实现计算风险指标

    下面我将详细讲解如何使用Python和Empyrical实现计算风险指标,包括以下几个步骤: 安装必要的Python库 数据准备 计算风险指标 1. 安装必要的Python库 在Python中,我们可以通过pip安装需要的库。Empyrical是一个用于金融统计的Python库,可以帮助我们计算各种风险指标。安装Empyrical可以使用以下命令: pip …

    python 2023年6月13日
    00
  • python 实现定时任务的四种方式

    接下来我将为您讲解Python实现定时任务的四种方式。 1.使用time.sleep() import time while True: # 每隔10秒钟打印一次 print("Hello, World!") time.sleep(10) 第一种方式是使用Python自带的time模块中的sleep()函数,每隔一段时间执行一次任务。上述…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部