Pandas.concat()的作用
Pandas库中的concat()函数主要用于合并/拼接一个或多个数据帧。数据帧可以是行方向(axis=0)或列方向(axis=1)的合并,merge的结果就是一个新的数据帧。合并的数据帧可以从多个源获取,这使得它成为数据处理和分析中非常有用的工具。
Pandas.concat()的使用方法
Pandas.concat()函数的基本语法如下:
pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)
其中,各参数的含义如下:
-
objs :用于拼接的Pandas对象序列,例如数据帧和Series
-
axis : 指定拼接数据的方向。0表示按行拼接,1表示按列拼接,默认为0。
-
join : 指定合并时采用的连接方式。'inner'表示内部连接,'outer'表示外部连接,默认为'outer'。
-
ignore_index :指定拼接后是否重置索引,默认为False,表示保留原索引。
-
keys : 构建分层索引,可以是任意多个分层级别的key。
-
levels : 指定每个key的级别,默认为None,表示按照keys的顺序进行自动编号。
-
names :自定义分层级别名称,默认为None。
-
verify_integrity : 检查合并后的数据是否有重复项,默认为False。
-
sort : 指定是否按照顺序进行排序,默认为False。
-
copy :指定是否在拼接之前复制数据,默认为True。
接下来我们通过两个实例来说明Pandas.concat()的使用方法:
实例1:按行合并数据帧
源数据:
df1=pd.DataFrame({'A':['A0','A1','A2','A3'],'B':['B0','B1','B2','B3'],'C':['C0','C1','C2','C3'],'D':['D0','D1','D2','D3']})
df2=pd.DataFrame({'A':['A4','A5','A6','A7'],'B':['B4','B5','B6','B7'],'C':['C4','C5','C6','C7'],'D':['D4','D5','D6','D7']})
df3=pd.DataFrame({'A':['A8','A9','A10','A11'],'B':['B8','B9','B10','B11'],'C':['C8','C9','C10','C11'],'D':['D8','D9','D10','D11']})
三个数据帧分别为:
df1
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
df2
A B C D
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
df3
A B C D
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
现在我们想要合并以上三个数据帧,可以通过以下代码来实现:
result=pd.concat([df1,df2,df3],axis=0)
合并后的结果为:
result
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
以上合并的结果是按照行方向进行合并,通过将三个数据帧沿着行方向依次合并,得到了一个新的数据帧。
实例2:按列合并数据帧
源数据:
df1=pd.DataFrame({'A':['A0','A1','A2','A3'],'B':['B0','B1','B2','B3'],'C':['C0','C1','C2','C3'],'D':['D0','D1','D2','D3']})
df2=pd.DataFrame({'E':['E0','E1','E2','E3'],'F':['F0','F1','F2','F3'],'G':['G0','G1','G2','G3'],'H':['H0','H1','H2','H3']})
两个数据帧为:
df1
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
df2
E F G H
0 E0 F0 G0 H0
1 E1 F1 G1 H1
2 E2 F2 G2 H2
3 E3 F3 G3 H3
现在我们想要合并以上两个数据帧,可以通过以下代码来实现:
result=pd.concat([df1,df2],axis=1)
合并后的结果为:
result
A B C D E F G H
0 A0 B0 C0 D0 E0 F0 G0 H0
1 A1 B1 C1 D1 E1 F1 G1 H1
2 A2 B2 C2 D2 E2 F2 G2 H2
3 A3 B3 C3 D3 E3 F3 G3 H3
以上合并的结果是按照列方向进行合并,通过将df1和df2沿着列方向拼接,得到了一个新的数据帧。
总结
Pandas.concat()函数是实现数据拼接的重要工具,它能够将多个数据帧按照指定的方向进行合并,非常灵活。在实际数据处理和分析的过程中,我们经常需要拼接多个数据源,应用concat()函数能够方便地将它们统一起来,从而使数据分析变得更加高效、简单。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解pandas.concat()(合并数据框)函数使用方法 - Python技术站