tf.summary.scalar

tf.summary.FileWriter

tf.summary.histogram

tf.summary.merge_all 

 

tf.equal

tf.argmax

tf.cast 

tf.div(x, y, name=None)

tf.pow(x, y, name=None)


tf.unstack(value, num=None, axis=0, name='unstack')

tf.stack(values, axis=0, name='stack')


tf.transpose(a, perm=None, name='transpose')

tf.set_random_seed(seed)
tf.reshape(tensor, shape, name=None)
tf.multiply(x, y, name=None
 
tf.name_scope(args, *kwds)
tf.variable_scope(args, *kwds)

 

 

tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None)

tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)

 

tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False)

 

tf.contrib.legacy_seq2seq.sequence_loss_by_example(logits, targets, weights, average_across_timesteps=True, softmax_loss_function=None, name=None)


 

 tf.gradients

apply_gradients

tf.distributions.Normal 

 

 




 

tf.summary.scalar

TensorFlow 官网API

https://www.tensorflow.org/api_docs/python/tf/summary/scalar

 

tf.summary.FileWriter:

TensorFlow 官网API

https://www.tensorflow.org/api_docs/python/tf/summary/FileWriter

 

tf.summary.histogram

TensorFlow 官网API

https://www.tensorflow.org/api_docs/python/tf/summary/histogram

 

tf.summary.merge_all 

TensorFlow 官网API

https://www.tensorflow.org/api_docs/python/tf/summary/merge_all

 

tf.equal:

TensorFlow 官网API

https://www.tensorflow.org/api_docs/python/tf/equal

 

tf.argmax:

TensorFlow 官网API

https://www.tensorflow.org/api_docs/python/tf/argmax

 

tf.cast

TensorFlow 官网API

https://www.tensorflow.org/api_docs/python/tf/cast

tf.div(x, y, name=None) 

参考链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/div

tf.pow(x, y, name=None)

TensorFlow 官网API

参考链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/pow 


tf.unstack(value, num=None, axis=0, name='unstack')

https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/unstack

tf.stack(values, axis=0, name='stack')

https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/stack

 1 ###tf.stack()/unstack():
 2 import tensorflow as tf
 3 
 4 a = tf.constant([1, 2, 3])
 5 b = tf.constant([4, 5, 6])
 6 c = tf.stack([a, b], axis=0)
 7 d = tf.stack([a, b], axis=1)
 8 e = tf.unstack(c, axis=0)
 9 f = tf.unstack(c, axis=1)
10 with tf.Session() as sess:
11     print(sess.run(c))
12     print(sess.run(d))
13     print(sess.run(e))
14     print(sess.run(f))
[[1 2 3]
 [4 5 6]]
[[1 4]
 [2 5]
 [3 6]]

[array([1, 2, 3], dtype=int32), 
array([4, 5, 6], dtype=int32)]

[array([1, 4], dtype=int32), 
array([2, 5], dtype=int32), 
array([3, 6], dtype=int32)]

参考链接:https://blog.csdn.net/u012193416/article/details/77411535

1 ###tf.stack()/unstack():
2 import tensorflow as tf
3 
4 g = tf.constant([[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]],[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]]])
5 h = tf.unstack(g)
6 with tf.Session() as sess:
7     print(sess.run(h))
[array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]], dtype=int32), 
array([[13, 14, 15, 16],
       [17, 18, 19, 20],
       [21, 22, 23, 24]], dtype=int32)]

 

tf.transpose(a, perm=None, name='transpose')

官方链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/transpose

 1 ###tf.transpose()
 2 import tensorflow as tf
 3 
 4 a = tf.constant([[1, 2, 3],
 5                  [4, 5, 6]])
 6 b = tf.constant([[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]],[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]]])
 7 c = tf.transpose(a, [0, 1])
 8 d = tf.transpose(a, [1, 0])
 9 e = tf.transpose(b, [0, 1, 2])
10 f = tf.transpose(b, [1, 0, 2])
11 g = tf.transpose(b, [0, 2, 1])
12 with tf.Session() as sess:
13     print(sess.run(c))
14     print(sess.run(d))
15     print(sess.run(e))
16     print(sess.run(f))
17     print(sess.run(g))
[[1 2 3]
 [4 5 6]]
[[1 4]
 [2 5]
 [3 6]]
[[[ 1  2  3  4]
  [ 5  6  7  8]
  [ 9 10 11 12]]

 [[13 14 15 16]
  [17 18 19 20]
  [21 22 23 24]]]
[[[ 1  2  3  4]
  [13 14 15 16]]

 [[ 5  6  7  8]
  [17 18 19 20]]

 [[ 9 10 11 12]
  [21 22 23 24]]]
[[[ 1  5  9]
  [ 2  6 10]
  [ 3  7 11]
  [ 4  8 12]]

 [[13 17 21]
  [14 18 22]
  [15 19 23]
  [16 20 24]]]

博客链接:https://www.cnblogs.com/studyDetail/p/6533316.html 

tf.set_random_seed(seed)

实例运行参见: Jupyter notebook:TensorFlowAPI

https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/set_random_seed

tf.reshape(tensor, shape, name=None)

Args:

  • tensor: A Tensor.
  • shape: A Tensor. Must be one of the following types: int32int64. Defines the shape of the output tensor.
  • name: A name for the operation (optional).
mport tensorflow as tf

t = tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9])
m = tf.constant([1, 2, 3, 4, 5, 6, 7, 8])
n =  tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18])

with tf.Session() as sess:
    print('t->[3, 3]:nn', sess.run(tf.reshape(t, [3,3 ])), 'n')
    
    print('m->[2, 4]:nn', sess.run(tf.reshape(m, [2,4 ])), 'n')
    
    print('n->[3, 2, 3]:nn', sess.run(tf.reshape(n, [3, 2, 3 ])), 'n')
    
    print('n->[2, -1]:nn', sess.run(tf.reshape(n, [2, -1])), 'n')
    
    print('n->[-1, 9]:nn', sess.run(tf.reshape(n, [-1, 9])), 'n')
    
    print('n->[2, -1, 3]:nn', sess.run(tf.reshape(n, [2, -1, 3])), 'n')
t->[3, 3]:

 [[1 2 3]
 [4 5 6]
 [7 8 9]] 

m->[2, 4]:

 [[1 2 3 4]
 [5 6 7 8]] 

n->[3, 2, 3]:

 [[[ 1  2  3]
  [ 4  5  6]]

 [[ 7  8  9]
  [10 11 12]]

 [[13 14 15]
  [16 17 18]]] 

n->[2, -1]:

 [[ 1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18]] 

n->[-1, 9]:

 [[ 1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18]] 

n->[2, -1, 3]:

 [[[ 1  2  3]
  [ 4  5  6]
  [ 7  8  9]]

 [[10 11 12]
  [13 14 15]
  [16 17 18]]] 

https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/reshape

tf.multiply(x, y, name=None

import tensorflow as tf    
  
#两个矩阵相乘  
x=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])    
y=tf.constant([[0,0,1.0],[0,0,1.0],[0,0,1.0]])  
#注意这里这里x,y要有相同的数据类型,不然就会因为数据类型不匹配而出错  
z=tf.multiply(x,y)  
  
#两个数相乘  
x1=tf.constant(1)  
y1=tf.constant(2)  
#注意这里这里x1,y1要有相同的数据类型,不然就会因为数据类型不匹配而出错  
z1=tf.multiply(x1,y1)  
  
#数和矩阵相乘  
x2=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])  
y2=tf.constant(2.0)  
#注意这里这里x1,y1要有相同的数据类型,不然就会因为数据类型不匹配而出错  
z2=tf.multiply(x2,y2)  
  
with tf.Session() as sess:    
    print(sess.run(z))  
    print(sess.run(z1))  
    print(sess.run(z2)) 
[[0. 0. 3.]
 [0. 0. 3.]
 [0. 0. 3.]]
2
[[2. 4. 6.]
 [2. 4. 6.]
 [2. 4. 6.]]

https://blog.csdn.net/m0_37041325/article/details/77036513

https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/multiply 

tf.name_scope(args, *kwds)

Returns a context manager for use when defining a Python op.

https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/name_scope

tf.variable_scope(args, *kwds)

Returns a context manager for defining ops that creates variables (layers).

This context manager validates that the (optional) values are from the same graph, ensures that graph is the default graph, and pushes a name scope and a variable scope.

https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/variable_scope   

 class tf.contrib.rnn.BasicLSTMCell

TensorFlow 官网API

链接:https://tensorflow.google.cn/versions/r1.9/api_docs/python/tf/contrib/rnn/BasicLSTMCell#zero_state

tf.nn.dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None)

官方链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/nn/dynamic_rnn

TensorFlow 官网API

链接:https://github.com/MorvanZhou/tutorials/blob/master/tensorflowTUT/tf20_RNN2/full_code.py


 

tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)

链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/nn/softmax_cross_entropy_with_logits 

tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False)

链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/nn/moments

tf.contrib.legacy_seq2seq.sequence_loss_by_example(logits, targets, weights, average_across_timesteps=True, softmax_loss_function=None, name=None)

Weighted cross-entropy loss for a sequence of logits (per example).

链接:https://tensorflow.google.cn/versions/r1.0/api_docs/python/tf/contrib/legacy_seq2seq/sequence_loss_by_example

 

tf.distributions.Normal 

Aliases:

  • Class tf.contrib.distributions.Normal
  • Class tf.distributions.Normal

The Normal distribution with location loc and scale parameters.

where loc = mu is the mean, scale = sigma is the std. deviation, and, Z is the normalization constant.

TensorFlow 官网API

Methods:

TensorFlow 官网API