python pytorch图像识别基础介绍

Python PyTorch 图像识别基础介绍

图像识别是计算机视觉领域的一个重要研究方向,它可以通过计算机对图像进行分析和理解,从而实现自动化的图像分类、目标检测、图像分割等任务。在 Python PyTorch 中,我们可以使用一些库和工具来实现图像识别。本文将详细讲解 Python PyTorch 图像识别的基础知识和操作方法,并提供两个示例说明。

1. Python PyTorch 图像识别的基础知识

在 Python PyTorch 中,实现图像识别的基础知识包括以下几个方面:

  1. 数据准备:我们需要准备一个包含图像和标签的数据集,可以使用 PyTorch 提供的 torchvision 库来加载和处理数据集。

  2. 模型定义:我们需要定义一个图像识别模型,可以使用 PyTorch 提供的 nn.Module 类来定义模型的结构和参数。

  3. 损失函数定义:我们需要定义一个损失函数,用于评估模型的性能和优化模型的参数。

  4. 优化器定义:我们需要定义一个优化器,用于更新模型的参数和优化模型的性能。

  5. 模型训练:我们需要使用训练数据集来训练模型,并使用验证数据集来评估模型的性能和调整模型的参数。

  6. 模型测试:我们需要使用测试数据集来测试模型的性能和准确率。

以下是 Python PyTorch 图像识别的基础知识示例代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# 数据准备
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 模型定义
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(nn.functional.relu(self.conv1(x)))
        x = self.pool(nn.functional.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

# 损失函数定义
criterion = nn.CrossEntropyLoss()

# 优化器定义
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 模型训练
for epoch in range(2):  # 多次循环遍历数据集
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:    # 每 2000 个小批量数据打印一次损失值
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 模型测试
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

在这个示例中,我们首先使用 torchvision 库加载了 CIFAR10 数据集,并将其分为训练数据集和测试数据集。然后,我们定义了一个名为 Net 的图像识别模型,并使用 nn.Module 类来定义模型的结构和参数。接着,我们定义了一个名为 criterion 的交叉熵损失函数和一个名为 optimizer 的随机梯度下降优化器。最后,我们使用 for 循环进行模型训练,并使用测试数据集来测试模型的性能和准确率。

2. Python PyTorch 图像分类的示例

在 Python PyTorch 中,我们可以使用图像识别技术来实现图像分类。以下是一个使用图像识别技术来实现图像分类的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# 数据准备
transform = transforms.Compose(
    [transforms.Resize(256),
     transforms.CenterCrop(224),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.ImageFolder(root='./data/train', transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.ImageFolder(root='./data/test', transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = trainset.classes

# 模型定义
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 53 * 53, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, len(classes))

    def forward(self, x):
        x = self.pool(nn.functional.relu(self.conv1(x)))
        x = self.pool(nn.functional.relu(self.conv2(x)))
        x = x.view(-1, 16 * 53 * 53)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

# 损失函数定义
criterion = nn.CrossEntropyLoss()

# 优化器定义
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 模型训练
for epoch in range(2):  # 多次循环遍历数据集
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:    # 每 2000 个小批量数据打印一次损失值
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 模型测试
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the test images: %d %%' % (
    100 * correct / total))

在这个示例中,我们首先使用 torchvision 库加载了一个包含两个子文件夹(train 和 test)的数据集,并将其分为训练数据集和测试数据集。然后,我们定义了一个名为 Net 的图像识别模型,并使用 nn.Module 类来定义模型的结构和参数。接着,我们定义了一个名为 criterion 的交叉熵损失函数和一个名为 optimizer 的随机梯度下降优化器。最后,我们使用 for 循环进行模型训练,并使用测试数据集来测试模型的性能和准确率。

结语

以上是 Python PyTorch 图像识别基础介绍的完整攻略,包括基础知识和图像分类的示例代码。在实际应用中,我们可以根据具体情况来选择合适的方法,以实现高效的图像识别和分类。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python pytorch图像识别基础介绍 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • pytorch框架对RTX 2080Ti RTX 3090的支持与性能测试

    时间点:2020-11-18 一、背景 2020年9月nvidia发布了30系列的显卡。比起20系列网上的评价是:性能翻倍,价格减半。最近正好本人手上有RTX 2080Ti 和 RTX 3090,所以本人专门对其在深度学习上的性能进行了测试。当前(2020-11-18)网上对3090与2080Ti在深度学习上的性能差异的测试数据比较少,大部分测试的对比每秒处…

    2023年4月8日
    00
  • linux中anaconda环境下pytorch的安装(conda安装本地包)

    跑代码的时候遇到和这位博主几乎一模一样的问题,安装的也是同一版本。目前清华源已经停止服务,如果要自己下载pytorch包的话估计只能在官网下载了。 原文:https://blog.csdn.net/summer2day/article/details/88652934 pytorch的安装(1)版本查看查看cuda版本cat /usr/local/cuda/…

    PyTorch 2023年4月8日
    00
  • Pytorch_第三篇_Pytorch Autograd (自动求导机制)

    Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心。 本文通过logistic回归模型来介绍Pytorch的自动求导机制。首先,本文介绍了tensor与求导相关的属性。其次,通过logistic回归模型来帮助理解BP算法中的前向传播以及反向传播中的导数计算。 以下均为初学者笔记。 Ten…

    2023年4月8日
    00
  • pytorch中.to(device) 和.cuda()的区别说明

    在PyTorch中,使用GPU加速可以显著提高模型的训练速度。在将数据传递给GPU之前,需要将其转换为GPU可用的格式。本文将介绍PyTorch中.to(device)和.cuda()的区别,并演示两个示例。 .to(device)和.cuda()的区别 .to(device) .to(device)是PyTorch中的一个方法,可以将数据转换为指定设备(如…

    PyTorch 2023年5月15日
    00
  • 【笔记】PyTorch快速入门:基础部分合集

    一天时间快速上手PyTorch PyTorch快速入门 Tensors Tensors贯穿PyTorch始终 和多维数组很相似,一个特点是可以硬件加速 Tensors的初始化 有很多方式 直接给值 data = [[1,2],[3,4]] x_data = torch.tensor(data) 从NumPy数组转来 np_arr = np.array(dat…

    2023年4月8日
    00
  • pytorch 2 variable 变量

    import torch from torch.autograd import Variable tensor = torch.FloatTensor([[1, 2], [3, 4]]) variable = Variable(tensor, requires_grad=True) print(tensor) # tensor([[1., 2.], [3.,…

    PyTorch 2023年4月8日
    00
  • 浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式

    在PyTorch中,我们可以使用不同的文件格式来保存模型,包括.pt、.pth和.pkl。这些文件格式之间有一些区别,本文将对它们进行详细讲解,并提供两个示例说明。 .pt和.pth文件 .pt和.pth文件是PyTorch中最常用的模型保存格式。它们都是二进制文件,可以保存模型的参数、状态和结构。.pt文件通常用于保存单个模型,而.pth文件通常用于保存多…

    PyTorch 2023年5月16日
    00
  • weight_decay in Pytorch

    在训练人脸属性网络时,发现在优化器里增加weight_decay=1e-4反而使准确率下降 pytorch论坛里说是因为pytorch对BN层的系数也进行了weight_decay,导致BN层的系数趋近于0,使得BN的结果毫无意义甚至错误 当然也有办法不对BN层进行weight_decay, 详见pytorch forums讨论1pytorch forums…

    PyTorch 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部