python pytorch图像识别基础介绍

Python PyTorch 图像识别基础介绍

图像识别是计算机视觉领域的一个重要研究方向,它可以通过计算机对图像进行分析和理解,从而实现自动化的图像分类、目标检测、图像分割等任务。在 Python PyTorch 中,我们可以使用一些库和工具来实现图像识别。本文将详细讲解 Python PyTorch 图像识别的基础知识和操作方法,并提供两个示例说明。

1. Python PyTorch 图像识别的基础知识

在 Python PyTorch 中,实现图像识别的基础知识包括以下几个方面:

  1. 数据准备:我们需要准备一个包含图像和标签的数据集,可以使用 PyTorch 提供的 torchvision 库来加载和处理数据集。

  2. 模型定义:我们需要定义一个图像识别模型,可以使用 PyTorch 提供的 nn.Module 类来定义模型的结构和参数。

  3. 损失函数定义:我们需要定义一个损失函数,用于评估模型的性能和优化模型的参数。

  4. 优化器定义:我们需要定义一个优化器,用于更新模型的参数和优化模型的性能。

  5. 模型训练:我们需要使用训练数据集来训练模型,并使用验证数据集来评估模型的性能和调整模型的参数。

  6. 模型测试:我们需要使用测试数据集来测试模型的性能和准确率。

以下是 Python PyTorch 图像识别的基础知识示例代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# 数据准备
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 模型定义
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(nn.functional.relu(self.conv1(x)))
        x = self.pool(nn.functional.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

# 损失函数定义
criterion = nn.CrossEntropyLoss()

# 优化器定义
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 模型训练
for epoch in range(2):  # 多次循环遍历数据集
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:    # 每 2000 个小批量数据打印一次损失值
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 模型测试
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

在这个示例中,我们首先使用 torchvision 库加载了 CIFAR10 数据集,并将其分为训练数据集和测试数据集。然后,我们定义了一个名为 Net 的图像识别模型,并使用 nn.Module 类来定义模型的结构和参数。接着,我们定义了一个名为 criterion 的交叉熵损失函数和一个名为 optimizer 的随机梯度下降优化器。最后,我们使用 for 循环进行模型训练,并使用测试数据集来测试模型的性能和准确率。

2. Python PyTorch 图像分类的示例

在 Python PyTorch 中,我们可以使用图像识别技术来实现图像分类。以下是一个使用图像识别技术来实现图像分类的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# 数据准备
transform = transforms.Compose(
    [transforms.Resize(256),
     transforms.CenterCrop(224),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.ImageFolder(root='./data/train', transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.ImageFolder(root='./data/test', transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = trainset.classes

# 模型定义
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 53 * 53, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, len(classes))

    def forward(self, x):
        x = self.pool(nn.functional.relu(self.conv1(x)))
        x = self.pool(nn.functional.relu(self.conv2(x)))
        x = x.view(-1, 16 * 53 * 53)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

# 损失函数定义
criterion = nn.CrossEntropyLoss()

# 优化器定义
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 模型训练
for epoch in range(2):  # 多次循环遍历数据集
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:    # 每 2000 个小批量数据打印一次损失值
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 模型测试
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the test images: %d %%' % (
    100 * correct / total))

在这个示例中,我们首先使用 torchvision 库加载了一个包含两个子文件夹(train 和 test)的数据集,并将其分为训练数据集和测试数据集。然后,我们定义了一个名为 Net 的图像识别模型,并使用 nn.Module 类来定义模型的结构和参数。接着,我们定义了一个名为 criterion 的交叉熵损失函数和一个名为 optimizer 的随机梯度下降优化器。最后,我们使用 for 循环进行模型训练,并使用测试数据集来测试模型的性能和准确率。

结语

以上是 Python PyTorch 图像识别基础介绍的完整攻略,包括基础知识和图像分类的示例代码。在实际应用中,我们可以根据具体情况来选择合适的方法,以实现高效的图像识别和分类。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python pytorch图像识别基础介绍 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • pytorch 生成随机数;linspace();torch.logspace();ones/zeros/eye

    在使用PyTorch做实验时经常会用到生成随机数Tensor的方法,比如: torch.rand() torch.randn() torch.rand_like() torch.normal()   torch.linespace() 在很长一段时间里我都没有区分这些方法生成的随机数究竟有什么不同,由此在做实验的时候经常会引起一些莫名其妙的麻烦。 所以在此做…

    PyTorch 2023年4月8日
    00
  • PyTorch常用代码段整理合集

    PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段。然而,这项工作常常令人心累身疲,耗费大量时间。所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助! 本文代码基于 PyTorch 1.0 版本,需要用到以下包 …

    2023年4月7日
    00
  • 分享Pytorch获取中间层输出的3种方法

    分享PyTorch获取中间层输出的3种方法 在PyTorch中,我们可以使用多种方法来获取神经网络模型中间层的输出。本文将介绍三种常用的方法,并提供示例说明。 1. 使用register_forward_hook()方法 register_forward_hook()方法是一种常用的方法,用于在神经网络模型的前向传递过程中获取中间层的输出。以下是一个示例,展…

    PyTorch 2023年5月15日
    00
  • pytorch(十九):MNIST打印准确率和损失

    一、例子            二、整体代码 import torch from torch.nn import functional as F import torch.nn as nn import torchvision from torchvision import datasets,transforms import torch.optim as …

    PyTorch 2023年4月7日
    00
  • 超简单!pytorch入门教程(五):训练和测试CNN

    我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧。 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一个神经网络,唯一不同的地方就是我们这次训练的是彩色图片,所以第一层卷积层的输入应为3个channel。修改完毕如下: 我们准备了训练集和测试集,并构造了一个CN…

    PyTorch 2023年4月6日
    00
  • pytorch中[…, 0]的用法说明

    在PyTorch中,[…, 0]的用法是用于对张量进行切片操作,取出所有维度的第一个元素。以下是详细的说明和两个示例: 1. 用法说明 在PyTorch中,[…, 0]的用法可以用于对张量进行切片操作,取出所有维度的第一个元素。这个操作可以用于对张量进行降维处理,例如将一个形状为(batch_size, height, width, channels…

    PyTorch 2023年5月16日
    00
  • 带你一文读懂Python垃圾回收机制

    Python是一种高级编程语言,它具有自动内存管理的特性。Python的垃圾回收机制是自动内存管理的核心。本文提供一个完整的攻略,介绍Python的垃圾回收机制。我们将提供两个示例,分别是使用垃圾回收机制释放内存和使用垃圾回收机制避免内存泄漏。 Python的垃圾回收机制 Python的垃圾回收机制是自动内存管理的核心。它负责检测和清除不再使用的内存,以便将…

    PyTorch 2023年5月15日
    00
  • 在Windows下安装配置CPU版的PyTorch的方法

    在Windows下安装配置CPU版的PyTorch的方法 在本文中,我们将介绍如何在Windows操作系统下安装和配置CPU版的PyTorch。我们将提供两个示例,一个是使用pip安装,另一个是使用Anaconda安装。 示例1:使用pip安装 以下是使用pip安装CPU版PyTorch的示例代码: 打开命令提示符或PowerShell窗口。 输入以下命令来…

    PyTorch 2023年5月16日
    00
合作推广
合作推广
分享本页
返回顶部