''' Created on 2017年4月22日 @author: weizhen ''' import os import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数 import LeNet5_infernece # 配置神经网络的参数 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARAZTION_RATE = 0.0001 TRAINING_STEPS = 30000 MOVING_AVERAGE_DECAY = 0.99 # 模型保存的路径和文件名 MODEL_SAVE_PATH = "/path/to/model/" MODEL_NAME = "model.ckpt" def train(mnist): # 定义输入输出placeholder x = tf.placeholder(tf.float32, [BATCH_SIZE, LeNet5_infernece.IMAGE_SIZE,#第一维表示一个batch中样例的个数 LeNet5_infernece.IMAGE_SIZE,#第二维和第三维表示图片的尺寸 LeNet5_infernece.NUM_CHANNELS],#第四维表示图片的深度,对于RGB格式的图片,深度为5 name='x-input') y_ = tf.placeholder(tf.float32, [None, LeNet5_infernece.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE) # 直接使用mnist_inference.py中定义的前向传播过程 y = LeNet5_infernece.inference(x,True,regularizer) global_step = tf.Variable(0, trainable=False) # 和5.2.1小节样例中类似地定义损失函数、学习率、滑动平均操作以及训练过程 variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variable_averages_op = variable_averages.apply(tf.trainable_variables()) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step); with tf.control_dependencies([train_step, variable_averages_op]): train_op = tf.no_op(name='train') # 初始化Tensorflow持久化类 saver = tf.train.Saver() with tf.Session() as sess: tf.initialize_all_variables().run() # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独立的程序来完成 for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) reshaped_xs=np.reshape(xs,(BATCH_SIZE, LeNet5_infernece.IMAGE_SIZE, LeNet5_infernece.IMAGE_SIZE, LeNet5_infernece.NUM_CHANNELS)) _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x:reshaped_xs, y_:ys}) # 每1000轮保存一次模型 if i % 1000 == 0: # 输出当前训练情况。这里只输出了模型在当前训练batch上的损失函数大小 # 通过损失函数的大小可以大概了解训练的情况。在验证数据集上的正确率信息 # 会有一个单独的程序来生成 print("After %d training step(s),loss on training batch is %g" % (step, loss_value)) # 保存当前的模型。注意这里给出了global_step参数,这样可以让每个被保存模型的文件末尾加上训练的轮数 # 比如"model.ckpt-1000"表示训练1000轮之后得到的模型 saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(argv=None): mnist = input_data.read_data_sets("/tmp/data", one_hot=True) train(mnist) if __name__ == '__main__': tf.app.run()
View Code
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:81、Tensorflow实现LeNet-5模型,多层卷积层,识别mnist数据集 - Python技术站