Opencv Hessian角点检测

以下是关于Opencv Hessian角点检测的详细攻略。

Opencv Hessian角点检测基本原理

Hessian角点检测是一种常用的图像处理技术,用于检测图像中的角。Hessian角点检测的基本原理是通过计算图像的Hessian矩阵,找到矩阵的特征值和特征向量从而确定图像中的点。

Opencv库提供cv2.cornerHarris函数和cv2.cornerMinEigenVal函数,用于实现Hessian角点检测。其中,cv2.cornerHarris函数计算Harris角点检测,cv2.cornerMinEigenVal函数计算最小特征值角点。

Opencv Hessian角点检测的步骤

  1. 读取图像
  2. 定义Hessian角点检测参数
  3. 图像进行Hessian角点检测
  4. 标记角点
  5. 显示图像

示例说明

下面是两个Opencv Hessian角点检测的示例:

示例1:使用cv2.cornerHarris函数对图像进行角点检测

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg')

# 定义Hessian角点检测参数
blockSize = 2
ksize = 3
k = 0.

# 对图像进行Hessian角点检测
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, blockSize, ksize, k)

# 标记角点
dst = cv2.dilate(dst, None)
img[dst > 0.01 * dst.max()] = [0, 0, 255]

# 显示图像
cv2.imshow('Hessian Corner Detection', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图和检测结果。

示例2:使用cv2.cornerMinEigenVal函数对视频进行角点检测

import cv2
import numpy as np

# 读取视频
cap = cv2.VideoCapture('test.mp4')

# 定Hessian角点检测参数
blockSize = 2
apertureSize = 3
k = 0.04

while True:
    # 读取视频帧
    ret, frame = cap.read()
    if not ret:
        break

    # 对帧进行Hessian角点检测
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray = np.float32(gray)
    dst = cv2.cornerMinEigenVal(gray, blockSize, apertureSize, k)

    # 标记角点
    img = frame.copy()
    img[dst > 0.01 * dst.max()] = [0, 0, 255]

    # 显示原始帧和检测结果
    cv2.imshow('Frame', frame)
    cv2.imshow('Hessian Corner Detection', img)

    # 按q键
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

运行该代码,系统会显示视频中的原始帧和检测结果。

结论

Opencvessian角点检测是一种常用的图像处理技术,用于检测图像中的角点。通过 Opencv 中的 cv2.cornerHarris 函数和 cv2.cornerMinEigenVal,可以实现对图像和视频的Hessian角点检测。通过本文介绍,应该已经了解 Opencv Hessian角点检测基本原理、步骤和两个示例说明,据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv Hessian角点检测 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 8-连接数

    以下是关于Opencv 8-连接数的详细攻略。 Opencv 8-连接数基本原理 Opencv 8-连接数是一种常用的图像处理技术,用于在二值图像中查找连通域。具体实现方法包括: cv2.findContours 函数:用于在二值图像中查找轮廓。 8-连接数算法的基本原理是在二值图像中查找连通域时,将每个像素点作一个节点,如果两个节点相邻且都为前景像素,则它…

    python 2023年5月10日
    00
  • Opencv 可视化特征量

    以下是关于Opencv可视化特征量的详细攻略。 Opencv可视化特征量基本原理 Opencv可视特征量是一种常用的图像处理技术,用于对图像进行特征提取和特征匹配。具体实现方法包: 对图像进行特征提取 对特征进行匹配 可视化特征点和特征匹配 可视化特征量用于图像拼接、图像检索等应用。 Opencv可视化特征量的使用方法 Opencv提供 cv2.drawKe…

    python 2023年5月10日
    00
  • Opencv 使用绝对值差和进行模式匹配

    以下是关于Opencv 使用绝对值差和进行模式匹配的详细讲解。 Opencv 使用绝对值差和进行模式匹配基本原理 Opencv 使用绝对值差和进行模式匹配是一种常用的图像处理技术,可以用于在图像中查找指定的模式。具体实方法包括: cv2.absdiff 函数:用于计算两个图像的绝对值差。 cv2.threshold:用于对图像进行二值化处理。 cv.find…

    python 2023年5月10日
    00
  • Opencv 掩膜

    以下是关于Opencv掩膜的详细攻略。 Opencv掩膜基本原理 Opencv掩膜是一种常用的图像处理技术,用于对图像进行像素级的操作。具体实现方法包括: 创建掩膜 对图像进行掩膜操作 对掩膜进行操作 掩膜可以用于图像的裁剪、图像的合成、图像的滤波等应用。 Opencv掩膜的使用方法 Opencv库提供 cv2.bitwise_and 函数,用于对图像进行掩…

    python 2023年5月10日
    00
  • Opencv 峰值信噪比

    Opencv 峰值信噪比的完整攻略 Opencv 峰值信噪比是一种常用的图像质量评价指标,可以用于评估图像的清晰度和噪声水平。本文将详细讲解Opencv 峰值信噪比的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 峰值信噪比的基本原理 Opencv 峰值信噪比是一种基于图像素值的评价指标,用于评估图像的清晰度和噪声水平。峰值信噪比的基本原理是通过…

    python 2023年5月10日
    00
  • Opencv 使用差分金字塔提取高频成分

    以下是关于Opencv使用差分金字塔提取高频成分的详细攻略。 Opencv使用差分金字塔提取高频成分基本原理 差分金字塔是一种常用的图像技术,用于提取图像的高频成分。具体实现方法包括: 对图像进行高斯金字塔分解 高斯金字塔的每一层进行差分操作 对差分金字塔进行重构 差分金字塔可以用于图像的锐化、边缘检测等应用。 Opencv使用差分金字塔提取高频成分的使用方…

    python 2023年5月10日
    00
  • Opencv k-平均聚类算法第一步

    以下是关于Opencv k-平均聚类算法第一步的详细攻略。 Opencv k-平均聚类算法第一步基本原理 k-平均聚类算法是一种无监督学习算法,将数据集分成k个簇,每个簇包含最接近的数据点。该算法的基本思想是通过不断迭代,将点分配到最近的簇中,然后重新计算簇的中心点直到簇的中心点不再发生变化。 Opencv-平均聚类算法第一步的步骤 读取数据 随机初始化k个…

    python 2023年5月10日
    00
  • Opencv 滑动窗口+HOG

    以下是关于Opencv滑动窗口+HOG的完整攻略。 Opencv滑动窗口+HOG基本原理 Opencv滑动窗口+HOG是一种目标检测方法,它通过在图像上滑动一个固定大小的窗口,将窗口内的图像块提取HOG特征,然后将特征输入到分类器中进行分类,从而实现目标检测。Opencv滑动窗口+HOG的基本原理是将图像分割成多个小块,然后将每个小块提取HOG特征,最后将特…

    python 2023年5月11日
    00
合作推广
合作推广
分享本页
返回顶部