一,anancona 安装
https://repo.anaconda.com/archive/

conda create -n caffe_gpu -c defaults python=3.6 caffe-gpu
conda create -n caffe -c defaults python=3.6 caffe

测试:
import caffe
python -c "import caffe; print dir(caffe)"

参考:https://blog.csdn.net/weixin_37251044/article/details/79763858

一、编译Caffe、PyCaffe

URL : https://github.com/BVLC/caffe.git
1
1.下载Caffe

git clone https://github.com/BVLC/caffe.git 
cd caffe

注意:如果想在anaconda下使用,就先 
source activate caffe_env 
然后在这个环境下安装 
利用anaconda2随意切换proto的版本,多proto并存,protobuf,libprotobuf

2.编译caffe

用cmake默认配置:
[注意]:一般需要修改config文件。

进入caffe根目录

mkdir build
cd build
cmake ..
make all -j8
make install 
make runtest -j8
3.安装pycaffe需要的依赖包,并编译pycaffe

cd ../python
conda install cython scikit-image ipython h5py nose pandas protobuf pyyaml jupyter
for req in $(cat requirements.txt); do pip install $req; done
cd ../build
make pycaffe -j8

4.添加pycaffe的环境变量

终端输入如下指令:

vim ~/.bashrc

在最后一行添加caffe的python路径(到达vim最后一行快捷键:Shift+G):

export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH

注意: /path/to/caffe是下载的Caffe的根目录,例如我的路径为:/home/Jack-Cui/caffe-master/python

Source环境变量,在终端执行如下命令:

source ~/.bashrc

注意: Source完环境变量,会退出testcaffe这个conda环境,再次使用命令进入即可。

四、测试

执行如下命令:

python -c "import caffe; print dir(caffe)"


fatal error: pyconfig.h: No such file or directory


如果使用的是系统的python路径,解决方法如下:

make clean
export CPLUS_INCLUDE_PATH=/usr/include/python2.7
make all -j8
如果使用的是anaconda Python,路径如下:

export CPLUS_INCLUDE_PATH=/home/gpf/anaconda3/include/python3.6m

http://blog.csdn.net/GPFYCF521/article/details/80387869


cd /usr/local/src/caffe-master/
    2  ll
    3  make  pycaffe 
    4  find   /  -name  "Python.h"
    5  export CPLUS_INCLUDE_PATH=/usr/local/src/Python-3.6.4/Include/Python.h:$CPLUS_INCLUDE_PATH
    6  make  clean 
    7  make  pycaffe
    8  export CPLUS_INCLUDE_PATH=/usr/local/src/Python-3.6.4/Include/:$CPLUS_INCLUDE_PATH
    9  make  clean 
   10  make  pycaffe
   11  export CPLUS_INCLUDE_PATH=
   12  export CPLUS_INCLUDE_PATH=/usr/local/src/Python-3.6.4/Include/:$CPLUS_INCLUDE_PATH
   13  make  clean 
   14  make  pycaffe
   15  find   /   -name  "pyconfig.h"
   16   yum install python-devel.x86_64
   17  make   clean 
   18  make  pycaffe
   19  find python3.6
   20  locate python3.6
   21  make clean
   22  export CPLUS_INCLUDE_PATH=/usr/include/python2.7
   23  export CPLUS_INCLUDE_PATH=
   24  export CPLUS_INCLUDE_PATH=/root/anaconda3/include/python3.5m
   25  make  all 
   26  find   /   -name  "pycaffe"
   27  history 





装的是python3.6,项目中用到boost相关代码,编译时找不到pyconfig.h。看了一下/usr/include/python3.6和/usr/include/python3.6m,都只有一个pyconfig-64.h文件。
网上查了一圈,找了各种方法都搞不定,其中一种方法可以安装一堆.h进/usr/include/python2.7,3.6文件夹中还是没有。方法如下:

1. 可以先查看一下含python-devel的包

    yum search python | grep python-devel

2. 64位安装python-devel.x86_64,32位安装python-devel.i686,我这里安装:

    sudo yum install python-devel.x86_64


yum search python | grep python36

python36u-devel.x86_64 : Libraries and header files needed for Python
 
yum install python36u-devel.x86_64


conda create -n caffe_gpu -c defaults python=3.5 caffe-gpu

  conda create -n caffe -c defaults python=3.5 caffe





CONDA  安裝caffe 
一、编译Caffe、PyCaffe

URL : https://github.com/BVLC/caffe.git
1
1.下载Caffe

git clone https://github.com/BVLC/caffe.git 
cd caffe

注意:如果想在anaconda下使用,就先 
source activate caffe_env 
然后在这个环境下安装 
利用anaconda2随意切换proto的版本,多proto并存,protobuf,libprotobuf

2.编译caffe

用cmake默认配置:
1
[注意]:一般需要修改config文件。

进入caffe根目录

mkdir build
cd build
cmake ..
make all -j8
make install 
make runtest -j8
 
3.安装pycaffe需要的依赖包,并编译pycaffe

cd ../python
conda install cython scikit-image ipython h5py nose pandas protobuf pyyaml jupyter
for req in $(cat requirements.txt); do pip install $req; done
cd ../build
make pycaffe -j8
 
4.添加pycaffe的环境变量

终端输入如下指令:
1
vim ~/.bashrc
1
在最后一行添加caffe的python路径(到达vim最后一行快捷键:Shift+G):
1
export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH
1
2
注意: /path/to/caffe是下载的Caffe的根目录,例如我的路径为:/home/Jack-Cui/caffe-master/python

Source环境变量,在终端执行如下命令:
1
source ~/.bashrc
1
注意: Source完环境变量,会退出testcaffe这个conda环境,再次使用命令进入即可。

四、测试

执行如下命令:
1
python -c "import caffe; print dir(caffe)"
1
2
 输出结果如下:


 从上图可以看出,caffe编译通过,并且一些的python的caffe接口,也存在。

 注意: 如果创建了conda环境,每次想要使用caffe,需要先进入这个创建的conda环境。


export   PATH=/root/anaconda3/bin:$PATH


conda create -n caffe  -c defaults python=3.5

conda  install  caffe-gpu

conda  install  tensorflow-gpu==1.11.0   


conda create --name  tensorflow    python=3.5

source activate tensorflow

source deactivate




conda    remove  -n   tensorflow   --all

import tensorflow as tf 和 tf.__version__


您正在使用GPU版本。您可以列出可用的tensorflow设备
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())


1. conda env list 或 conda info -e 查看当前存在哪些虚拟环境

2. conda update conda 检查更新当前conda

3. conda update --all 更新本地已安装的包

4. conda create -n your_env_name python=X.X(2.7、3.6等) anaconda 命令创建python版本为X.X、名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到。

5. Windows: activate your_env_name(虚拟环境名称) 激活虚拟环境

6. conda install -n your_env_name [package] 安装package到your_env_name中

7. linux: source deactivate           Windows: deactivate     关闭虚拟环境

8. conda remove -n your_env_name(虚拟环境名称) --all 删除虚拟环境

9. conda remove --name your_env_name package_name  删除环境中的某个





conda 安装pytorch  
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/


添加清华源
命令行中直接使用以下命令

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/

# 设置搜索时显示通道地址
conda config --set show_channel_urls yes


————————————————————————————————————————————————————————————————————————————————
设置搜索时显示通道地址                                                           |
conda config --set show_channel_urls yes
conda GPU的命令如图所示:
conda install pytorch torchvision -c pytorch
conda CPU的命令如图所示:
conda install pytorch-cpu -c pytorch 

pip3 install torchvision

pytorch-gpu
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
 
import torch
print(torch.__version__)   
print(torch.cuda.device_count())
print(torch.cuda.is_available())


--------------------------------------------------------------------------------|


conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/


 conda config --set show_channel_urls yes 
查看已经添加的channels

conda config --get channels
已添加的channel在哪里查看

vim ~/.condarc

conda search gatk
安装完成后,可以用“which 软件名”来查看该软件安装的位置:

 which gatk
如需要安装特定的版本:
conda install 软件名=版本号
conda install gatk=3.7


查看已安装软件:

conda list
更新指定软件:

conda update gatk
卸载指定软件:

conda remove gatk





cntk  

https://blog.csdn.net/Jonms/article/details/79550512
ubuntu1604   cuda -cudnn
接着,运行下面的命令安装anaconda

$ sh Anaconda3-5.1.0-Linux-x86_64.sh

anaconda的安装很简单,这里就不多描述。

CNTK需要你的系统安装有OpenMPI。在Ubuntu中可以通过以下命令安装

$ sudo apt install openmpi-bin

然后,创建名为cntk-py35的虚拟环境

$ conda create --name cntk-py35 python=3.5 numpy scipy h5py jupyter

激活cntk虚拟环境

$ source activate cntk-py35

关闭cntk虚拟环境

$ source deactivate

激活虚拟环境后,用pip安装CNTK(GPU)即可

$ pip install https://cntk.ai/PythonWheel/GPU/cntk-2.4-cp35-cp35m-linux_x86_64.whl

测试CNTK是否安装成功并输出CNTK版本

$ python -c "import cntk; print(cntk.__version__)"
 





cpu  
pip  install  https://cntk.ai/PythonWheel/CPU-Only/cntk-2.7.post1-cp35-cp35m-linux_x86_64.whl

python -c "import cntk; print(cntk.__version__)"



报错:
ImportError: No module named 'cntk._cntk_py'
ImportError: libpython3.5m.so.1.0: cannot open shared object file: No such file or directory

处理:
 find     /  -name  "libpython3.5m.so.1.0"   找到路径  使用conda安装的

/root/anaconda3/envs/cntk-py35/lib/   加入环境变量
#cd /etc/ld.so.conf.d

#vim python3.conf

将编译后的python/lib地址加入conf文件

#ldconfig


容器环境变量会丢失,使用dockerfile重新赋值。 
 export   PATH=/root/anaconda3/bin:$PATH     上面的链接库配置

pip  https://cntk.ai/PythonWheel/CPU-Only/cntk-2.7.post1-cp36-cp36m-linux_x86_64.whl





python3.7环境下

theano  

apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev

pip install Theano


NumPy (~30s): python -c "import numpy; numpy.test()"
SciPy (~1m): python -c "import scipy; scipy.test()"
Theano (~30m): python -c "import theano; theano.test()"

已安装cuda
export PATH=/usr/local/cuda-5.5/bin:$PATH
 
export LD_LIBRARY_PATH=/usr/local/cuda-5.5/lib64:$LD_LIBRARY_PATH





安装Caffe2
docker pull caffe2ai/caffe2
 
# to test
nvidia-docker run -it caffe2ai/caffe2:latest python -m caffe2.python.operator_test.relu_op_test
 
# to interact
nvidia-docker run -it caffe2ai/caffe2:latest /bin/bash
 

python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"
#返回Success就OK
python2 -c 'from caffe2.python import workspace; print(workspace.NumCudaDevices())'
#返回1就OK
#进入python输入
from caffe2.python import workspace

错误:
ModuleNotFoundError: No module named 'google'
pip  install   protobuf
ModuleNotFoundError: No module named 'past'

 pip  install  future 


安装后检测
python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"


gpu检测
python -m caffe2.python.operator_test.relu_op_test


Python2.7和Python3.6下都可以,不过只是cpu版本,只限于Mac和Ubuntu平台下:

conda install -c caffe2 caffe2


参考网址:
https://blog.csdn.net/qq_35451572/article/details/79428167


https://blog.csdn.net/Yan_Joy/article/details/70241319


https://blog.csdn.net/zmm__/article/details/90285887

https://blog.csdn.net/u013842516/article/details/80604409




使用Docker安装GPU版本caffe2

https://blog.csdn.net/Andrwin/article/details/94736930
caffe安装
https://blog.csdn.net/jacky_ponder/article/details/53129355