引入网友的一个回答如下

Deconvolution layer is a very unfortunate name and should rather be called a transposed convolutional layer.

 

Visually, for a transposed convolution with stride one and no padding, we just pad the original input (blue entries) with zeroes (white entries) (Figure 1).

Deconvolution 反卷积理解

In case of stride two and padding, the transposed convolution would look like this (Figure 2):

Deconvolution 反卷积理解

github上有较好的动画演示,大家有兴趣可以自己打开看看,如下图

Deconvolution 反卷积理解

 

 

 Deconvolution 反卷积理解

 

Deconvolution 反卷积理解

最后一个是dilation的效果,大家如果有需要可以依据图理解一下其原理。