~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
转载请注明出处:
http://www.cnblogs.com/darkknightzh/p/6591923.html
参考网址:
http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow
http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter
如果电脑有多个GPU,tensorflow默认全部使用。如果想只使用部分GPU,可以设置CUDA_VISIBLE_DEVICES。在调用python程序时,可以使用(见第一个参考网址Franck Dernoncourt的回复):
CUDA_VISIBLE_DEVICES=1 python my_script.py
Environment Variable Syntax Results CUDA_VISIBLE_DEVICES=1 Only device 1 will be seen CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible CUDA_VISIBLE_DEVICES="0,1" Same as above, quotation marks are optional CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked CUDA_VISIBLE_DEVICES="" No GPU will be visible
2 python代码中设置使用的GPU
如果要在python代码中设置使用的GPU(如使用pycharm进行调试时),可以使用下面的代码(见第二个参考网址中Yaroslav Bulatov的回复):
import os os.environ["CUDA_VISIBLE_DEVICES"] = "2"
3 设置tensorflow使用的显存大小
3.1 定量设置显存
默认tensorflow是使用GPU尽可能多的显存。可以通过下面的方式,来设置使用的GPU显存:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7。
可以按照需要,设置不同的值,来分配显存。
========================================================================
170703更新:
3.2 按需设置显存
上面的只能设置固定的大小。如果想按需分配,可以使用allow_growth
参数(参考网址:http://blog.csdn.net/cq361106306/article/details/52950081):
gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
170703更新结束
========================================================================
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow中使用指定的GPU及GPU显存 - Python技术站