1 入门

2 多个输入和输出

3 共享层

考虑这样的一个问题:我们要判断连个tweet是否来源于同一个人。

首先我们对两个tweet进行处理,然后将处理的结构拼接在一起,之后跟一个逻辑回归,输出这两条tweet来自同一个人概率。

因为我们对两条tweet的处理是相同的,所以对第一条tweet的处理的模型,可以被重用来处理第二个tweet。我们考虑用LSTM进行处理。

假设我们的输入是两条 280*256的向量

首先定义输入:

import keras
from keras.layers import Input, LSTM, Dense
from keras.models import Model

tweet_a = Input(shape=(280, 256))
tweet_b = Input(shape=(280, 256))

然后我们共享LSTM。共享层很简单,只要实例化层一次,然后在你想处理的tensor上调用你想要应用的次数即可(翻译无力,看代码)

# This layer can take as input a matrix
# and will return a vector of size 64
shared_lstm = LSTM(64)

# When we reuse the same layer instance
# multiple times, the weights of the layer
# are also being reused
# (it is effectively *the same* layer)
encoded_a = shared_lstm(tweet_a)
encoded_b = shared_lstm(tweet_b)

# We can then concatenate the two vectors:
merged_vector = keras.layers.concatenate([encoded_a, encoded_b], axis=-1)

# And add a logistic regression on top
predictions = Dense(1, activation='sigmoid')(merged_vector)

# We define a trainable model linking the
# tweet inputs to the predictions
model = Model(inputs=[tweet_a, tweet_b], outputs=predictions)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])
model.fit([data_a, data_b], labels, epochs=10)

其实,简单点说,对一个层的多次调用,就是在共享这个层。这里有一个层的节点的概念

当你在一个输入tensor上调用一个层时,就会生成一个输出tensor,就会在这个层上添加一个节点,这个节点连接着这两个tensor(输入tensor和输出tensor)。当你多次调用同一个层的时,

这个层生成的节点就会按照0 ,1, 2, 。。以此类推编号。

那么当一个层有多个节点的时候,我们怎么获取它的输出呢?

如果直接通过output获取会出错:

a = Input(shape=(280, 256))
b = Input(shape=(280, 256))

lstm = LSTM(32)
encoded_a = lstm(a)
encoded_b = lstm(b)

lstm.output
>> AttributeError: Layer lstm_1 has multiple inbound nodes,
hence the notion of "layer output" is ill-defined.
Use `get_output_at(node_index)` instead.

这时候应该通过索引进行调用:

assert lstm.get_output_at(0) == encoded_a
assert lstm.get_output_at(1) == encoded_b

对于输入,也是同样的

a = Input(shape=(32, 32, 3))
b = Input(shape=(64, 64, 3))

conv = Conv2D(16, (3, 3), padding='same')
conved_a = conv(a)

# Only one input so far, the following will work:
assert conv.input_shape == (None, 32, 32, 3)

conved_b = conv(b)
# now the `.input_shape` property wouldn't work, but this does:
assert conv.get_input_shape_at(0) == (None, 32, 32, 3)
assert conv.get_input_shape_at(1) == (None, 64, 64, 3)