在前三周的作业中,我构造了概率图模型并调用第三方的求解器对器进行了求解,最终获得了每个随机变量的分布(有向图),最大后验分布(双向图)。本周作业的主要内容就是自行编写概率图模型的求解器。实际上,从根本上来说求解器并不是必要的。其作用只是求取边缘分布或者MAP,在得到联合CPD后,寻找联合CPD的最大值即可获得MAP,对每个变量进行边缘分布求取即可获得边缘分布。但是,这种简单粗暴的方法效率极其低下,对于MAP求取而言,每次得到新的evidance时都要重新搜索CPD,对于单个变量分布而言,更是对每个变量都要反复进行整体边缘化。以一个长度为6字母的单词为例,联合CPD有着多达26^6个数据,反复操作会浪费大量的计算资源。
团树算法背后的思路是分而治之。对于一组随机变量ABCDEFG,如果A和其他变量之间是独立的,那么无论是求边缘分布还是MAP都可以将A单独考虑。如果ABC联系比较紧密,CDE联系比较紧密,那么如果两个团关于C的边缘分布是相同的,则我们没有必要将ABCDE全部乘在一起再来分别求各个变量的边缘分布。因为反过来想,乘的时候也只是把对应的C乘起来,如果C的边缘分布相同,在相乘的时候其实两个团之间并没有引入其他信息,此时乘法不会对ABDE的边缘分布产生影响。团树算法的数学过程和Variable Elimination是相同的。
PGM在计算机中的表达是factorLists,factor的var(i),var表示节点连接关系。val描述了factor中var的关系。cliqueTree其实是一种特殊的factorLists,它的var是clique,表示一堆聚类的var。它的val表示的还是var之间的关系。只不过此时var之间的连接不复存在了。所以clique由两个变量组成:1、cliqueTree 2、edges.
团树算法的初始化可以分为两个过程:1、将变量抱团;2、获取团的初始势;
变量抱团是一个玄学过程,因为有很多不同的抱法,而且还都是对的。比较常见的是最小边,最小割等...其实如果是人来判断很容易就能得到结果,但是使用计算机算法则要费一些功夫了。不过这不涉及我们对团树算法的理解,所以Koller教授代劳了。
团的初始势表示团里变量之间的关系。其算法如下,需要注意的是不能重复使用factor.因为一个factor表达了一种关系,如果两个团里都有同一个factor,那么就是...这个事情。。。你帮他重复一遍。。。等于你也有责任的,晓得吧?
1 %COMPUTEINITIALPOTENTIALS Sets up the cliques in the clique tree that is 2 %passed in as a parameter. 3 % 4 % P = COMPUTEINITIALPOTENTIALS(C) Takes the clique tree skeleton C which is a 5 % struct with three fields: 6 % - nodes: cell array representing the cliques in the tree. 7 % - edges: represents the adjacency matrix of the tree. 8 % - factorList: represents the list of factors that were used to build 9 % the tree. 10 % 11 % It returns the standard form of a clique tree P that we will use through 12 % the rest of the assigment. P is struct with two fields: 13 % - cliqueList: represents an array of cliques with appropriate factors 14 % from factorList assigned to each clique. Where the .val of each clique 15 % is initialized to the initial potential of that clique. 16 % - edges: represents the adjacency matrix of the tree. 17 % 18 % Copyright (C) Daphne Koller, Stanford University, 2012 19 20 21 22 function P = ComputeInitialPotentials(C) 23 Input = C; 24 % number of cliques 25 N = length(Input.nodes); 26 27 % initialize cluster potentials 28 P.cliqueList = repmat(struct('var', [], 'card', [], 'val', []), N, 1); 29 P.edges = zeros(N); 30 31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 32 % YOUR CODE HERE 33 % 34 % First, compute an assignment of factors from factorList to cliques. 35 % Then use that assignment to initialize the cliques in cliqueList to 36 % their initial potentials. 37 38 % C.nodes is a list of cliques. 39 % So in your code, you should start with: P.cliqueList(i).var = C.nodes{i}; 40 % Print out C to get a better understanding of its structure. 41 % 42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 43 % N_factors = length(C.factorList); 44 for i = 1:N 45 k = 1; 46 clear clique_ 47 N_factors = length(Input.factorList); 48 for j = 1:N_factors 49 if min(ismember(Input.factorList(j).var,Input.nodes{i})) 50 clique_(k) = Input.factorList(j); 51 k = k+1; 52 Input.factorList(j) =struct('var', [], 'card', [], 'val', []); 53 end 54 end 55 Joint_Dis_cliq = ComputeJointDistribution(clique_); 56 Joint_Dis_cliq_std = StandardizeFactors(Joint_Dis_cliq); 57 P.cliqueList(i) = Joint_Dis_cliq_std; 58 end 59 P.edges = Input.edges; 60 end
View Code
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:机器学习 —— 概率图模型(Homework: Exact Inference) - Python技术站