把VGG-Face.mat权重迁移到PyTorch模型需要经过以下步骤:
步骤1:下载VGG-Face.mat文件
可以在官方网站(http://www.robots.ox.ac.uk/~vgg/software/vgg_face/)上下载VGG-Face.mat权重文件。
步骤2:使用scipy.io加载VGG-Face.mat文件
要加载VGG-Face.mat文件,需要使用scipy.io.loadmat函数。该函数返回一个字典,其中包含MATLAB文件中存储的所有变量。
import scipy.io as sio
# 加载VGG-Face.mat文件
mat_data = sio.loadmat('vgg-face.mat')
步骤3:将权重迁移到PyTorch模型
为了将权重从MATLAB迁移到PyTorch,需要将每个权重层和对应的模型层进行映射。下面是一个将VGG-Face.mat权重迁移到PyTorch的例子:
import torch
import torch.nn as nn
import numpy as np
# 定义PyTorch的VGG模型
model = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
# 遍历权重,将权重迁移到模型上
i = 0
for layer in model:
if isinstance(layer, nn.Conv2d):
# 获取权重和偏置
weights = mat_data['layers'][0][i][0][0][2][0][0]
bias = mat_data['layers'][0][i][0][0][2][0][1]
# 将权重从(高度,宽度,输入通道,输出通道)转换为(输出通道,输入通道,高度,宽度)
weights = np.transpose(weights, (3, 2, 0, 1))
# 将权重和偏置转换为torch张量,并设置到层中
layer.weight.data = torch.from_numpy(weights)
layer.bias.data = torch.from_numpy(bias.reshape(-1))
i += 2 # 跳过bn层
在这个例子中,我们使用Sequential模型定义了PyTorch的VGG网络。在迁移权重时,我们从MATLAB文件中获取对应的权重和偏置,并将它们从(高度,宽度,输入通道,输出通道)转换为(输出通道,输入通道,高度,宽度)的形式。最后,我们将转换后的权重和偏置设置到PyTorch模型的对应层中。
示例1:将VGG16的权重迁移到PyTorch模型
import torch
import torch.nn as nn
import numpy as np
import scipy.io as sio
# 定义PyTorch的VGG16模型
vgg16 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096), nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 1000),
)
# 加载VGG16的权重文件
mat_data = sio.loadmat('vgg16.mat')
# 遍历网络层,并将权重迁移到模型上
i = 0
for layer in vgg16:
if isinstance(layer, nn.Conv2d):
# 获取权重和偏置
weights = mat_data['layers'][0][i][0][0][2][0][0]
bias = mat_data['layers'][0][i][0][0][2][0][1]
# 将权重从(高度,宽度,输入通道,输出通道)转换为(输出通道,输入通道,高度,宽度)
weights = np.transpose(weights, (3, 2, 0, 1))
# 将权重和偏置转换为torch张量,并设置到层中
layer.weight.data = torch.from_numpy(weights)
layer.bias.data = torch.from_numpy(bias.reshape(-1))
i += 1
# 打印模型的结构和权重
print(vgg16)
print(vgg16.state_dict())
在这个例子中,我们使用Sequential模型定义了PyTorch的VGG16网络,并将VGG16的权重文件加载到mat_data中。我们遍历网络层,并将权重迁移到模型上。最后,我们打印了模型的结构和对应的权重。
示例2:将VGG-Face的权重迁移到PyTorch模型
import torch
import torch.nn as nn
import numpy as np
import scipy.io as sio
# 定义PyTorch的VGG-Face模型
vgg_face = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(25088, 4096), nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096), nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 2622),
)
# 加载VGG-Face的权重文件
mat_data = sio.loadmat('vgg-face.mat')
# 遍历网络层,并将权重迁移到模型上
i = 0
for layer in vgg_face:
if isinstance(layer, nn.Conv2d):
# 获取权重和偏置
weights = mat_data['layers'][0][i][0][0][2][0][0]
bias = mat_data['layers'][0][i][0][0][2][0][1]
# 将权重从(高度,宽度,输入通道,输出通道)转换为(输出通道,输入通道,高度,宽度)
weights = np.transpose(weights, (3, 2, 0, 1))
# 将权重和偏置转换为torch张量,并设置到层中
layer.weight.data = torch.from_numpy(weights)
layer.bias.data = torch.from_numpy(bias.reshape(-1))
i += 2 # 跳过bn层
# 打印模型的结构和权重
print(vgg_face)
print(vgg_face.state_dict())
在这个例子中,我们使用Sequential模型定义了PyTorch的VGG-Face网络,并将VGG-Face的权重文件加载到mat_data中。我们遍历网络层,并将权重迁移到模型上。最后,我们打印了模型的结构和对应的权重。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:把vgg-face.mat权重迁移到pytorch模型示例 - Python技术站