详解Numpy exp()(计算指数函数)的作用与使用方法

Numpy exp()函数的作用

Numpy exp()函数是numpy中的数学函数,用于计算给定数据的指数值。该函数返回e(自然常数)的幂,即e的x次幂。

使用方法

numpy.exp(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

主要参数说明:

  • x : 输入值,ndarray对象或标量
  • out : ndarray、None或ndarray和None的元组,可选。
    • 存储结果的位置。如果提供,它必须具有输入广播到的形状。如果未提供或无,则返回新分配的数组。元组(只能作为关键字参数)的长度必须等于输出的数量。
  • where : array_like,可选
    • rue的值表示计算该位置的ufunc,False的值表示将该值单独留在输出中。

返回值:

  • 输出数组,x的元素指数。

示例1:

import numpy as np
x = np.array([1, 2, 3])
print(np.exp(x))

输出结果为:

array([ 2.71828183,  7.3890561 , 20.08553692])

示例2:

import numpy as np
x = np.array([0, 1, 2])
print(np.exp2(x))

输出结果为:

array([1., 2., 4.])

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Numpy exp()(计算指数函数)的作用与使用方法 - Python技术站

(2)
上一篇 2023年3月22日
下一篇 2023年3月22日

相关文章

  • 详解Numpy std()(返回数组元素的标准差)函数的作用与使用方法

    Numpy std()函数是用于计算数组中元素的标准差的函数。标准差是测量数据分布的一种度量,它是指各个数据点相对于数据集平均值的离散程度。在数据分析中,标准差被广泛使用,因为它是一种很好的识别异常值的工具。 使用方法: np.std(arr, axis=None, dtype=None, ddof=0,out=None, keepdims=False) 参…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy split()(沿着指定的轴分割数组)函数的作用与使用方法

    Numpy split()函数是用于将一个numpy数组沿着指定轴(axis)分割成多个子数组。其语法如下: numpy.split(ary, indices_or_sections, axis=0) 其中,参数ary是要分割的numpy数组,indices_or_sections用于指定分割点或分割段的数量或者位置,axis是指定分割轴的方向。返回值是分割…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy trapz()(计算积分)函数的作用与使用方法

    Numpy库是Python中一个重要的科学计算库,其中的trapz()函数在数值积分中扮演着重要的角色。trapz()函数可以用来计算一组数值数据的积分值,它的输入参数为x和y,其中x是自变量的取值,y是对应自变量的函数值,输出为积分的结果值。 使用方法: numpy.trapz(y, x=None, dx=1.0, axis=-1) y: 数组,表示被积函…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy roots()(求解多项式的根)函数的作用与使用方法

    Numpy 中的 roots() 函数可以用于求解多项式的根。它返回给定多项式的根,其输入参数为一维多项式系数数组,返回值为一个包含所有根的一维数组。 使用方法 numpy.roots(p) 参数: p:包含 N+1 个元素的一维 NumPy 数组,表示多项式每个系数。 返回值: 一维数组,包含多项式的根。 例子1 import numpy as np p …

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy repeat()(重复数组元素)函数的作用与使用方法

    Numpy库中的repeat()函数是用来对数组元素进行重复操作的方法。该方法会将原始数组的每个元素复制若干遍,生成一个新的重复数组。 使用方法 numpy.repeat(arr, repeat_times, axis=None) 参数说明: arr:要进行重复操作的数组; repeat_times:指定每个元素需要重复的次数; axis:指定操作的轴向。 …

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy argmax()(返回数组元素的最大值的索引)函数的作用与使用方法

    Numpy argmax()函数用于返回给定数组中的最大值所在的索引位置。 它的语法格式如下: numpy.argmax(arr, axis=None, out=None) 参数说明: arr:传入的待计算数组,必须为一维或多维数组。 axis:可选参数,用于指定在哪个维度上进行计算,其取值范围为0到N-1(N为数组的维度数)。 out:可选参数,用于指定输…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy all()(判断元素是否全部为True)函数的作用与使用方法

    Numpy all()函数是一个逻辑函数,用于对数组中的所有元素进行逻辑判断(是否满足指定条件)。如果数组中所有元素都满足条件,则返回True;否则返回False。 使用方法 numpy.all(a, axis=None, out=None, keepdims=False) 参数介绍: a:要进行操作的数组。 axis:沿着哪个轴操作,默认为None,表示对…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy vdot()(返回数组的向量积)函数的作用与使用方法

    Numpy中的vdot()函数用于计算两个向量的点积。点积可以理解为两个向量在某个角度上的投影的乘积,也叫做内积或者数量积。 使用方法 语法为: numpy.vdot(a, b) 参数说明: a,b:要计算点积的向量,可以是数组对象- 返回值:计算结果,为标量值 实例1:计算一维向量的点积 import numpy as np # 定义两个一维数组 a = …

    Numpy函数大全 2023年3月22日
    00
合作推广
合作推广
分享本页
返回顶部