详解Numpy dot()(返回数组的点积)函数的作用与使用方法

Numpy dot()函数是Numpy库中的一个重要函数,用于计算两个矩阵的乘积,并返回乘积矩阵。在机器学习、深度学习和数据分析等领域中,经常需要进行矩阵乘法计算,Numpy dot()函数的使用就变得非常重要。

Numpy dot()函数的使用方法:

numpy.dot(a, b, out=None)

参数:

  • a: 输入的第一个矩阵
  • b: 输入的第二个矩阵
  • out: 输出结果的矩阵,默认为None

注意事项:

  1. 两个输入矩阵的列数必须相等
  2. 输出结果的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数

下面给出两个实例说明如何使用Numpy dot()函数:

实例1

假设有两个矩阵,分别为A = [[1, 2, 3], [4, 5, 6]]和B = [[7, 8], [9, 10], [11, 12]],现在要计算它们的乘积。可以使用Numpy dot()函数来完成:

import numpy as np
A = np.array([[1, 2, 3], [4, 5, 6]])
B = np.array([[7, 8], [9, 10], [11, 12]])
C = np.dot(A, B)
print(C)

输出结果为:

[[ 58  64]
 [139 154]]

实例2

假设有一组学生的成绩数据,分别为语文、数学和英语成绩,现在需要计算每个学生的总分。可以使用Numpy dot()函数来完成:

import numpy as np
scores = np.array([[80, 90, 70], [60, 70, 80], [90, 85, 75], [70, 75, 85]])
weights = np.array([0.3, 0.4, 0.3])
totals = np.dot(scores, weights)
print(totals)

输出结果为:
[81. , 70. , 84.5, 76. ]

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Numpy dot()(返回数组的点积)函数的作用与使用方法 - Python技术站

(2)
上一篇 2023年3月22日
下一篇 2023年3月22日

相关文章

  • 详解Numpy std()(返回数组元素的标准差)函数的作用与使用方法

    Numpy std()函数是用于计算数组中元素的标准差的函数。标准差是测量数据分布的一种度量,它是指各个数据点相对于数据集平均值的离散程度。在数据分析中,标准差被广泛使用,因为它是一种很好的识别异常值的工具。 使用方法: np.std(arr, axis=None, dtype=None, ddof=0,out=None, keepdims=False) 参…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy fft()(快速傅里叶变换)函数的作用与使用方法

    Numpy fft()函数是对一维或者二维的数组进行快速傅里叶变换(FFT),其函数原型为:numpy.fft.fft(a, n=None, axis=-1, norm=None),参数含义如下: a:接受一个实数组或复数数组 n:可选项,表示傅里叶变换的长度,如果不指定则默认为a的长度 axis:可选参数,表示进行傅里叶变换的轴,默认情况下,对于一维的数组…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy log10()(计算常用对数函数)的作用与使用方法

    Numpy log10() 函数用于计算给定数组中所有元素的10为底的对数。它的使用方法非常简单,只需要传入一个数组作为参数即可。下面是详细的使用方法攻略以及两个实例说明: 使用方法 首先,需要引入 Numpy 库: import numpy as np 然后,直接使用 log10() 函数即可: np.log10(array) 其中,array 是传入的待…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy resize()(改变数组的大小)函数的作用与使用方法

    Numpy中的resize()函数用于调整数组的大小,它的操作方式与reshape()函数有些相似,但resize()函数不会限制调整后数组的大小。 resize()函数的语法如下: numpy.resize(arr, shape) 其中,arr为需要调整大小的数组,shape为调整后的目标大小。需要注意的是,shape必须是一个整数或者是一个整数元组。 现…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy arange()函数的作用与使用方法

    Numpy arange()函数用于创建一个数组,该数组包含指定的范围内的值,并具有相等的加值步长。 下面是该函数的语法: numpy.arange(start,stop,step,dtype = None) 参数说明: start: 数组中的起始值。 stop: 数组中的终止值。 step: 数组中的步长值。 dtype: 数据类型可选参数,默认情况下是浮…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy argsort()(返回数组排序后的索引)函数的作用与使用方法

    Numpy argsort() 是一个非常常用的函数,用于返回数组排序后的索引值。 使用方法 numpy.argsort(a, axis=-1, kind=None, order=None) 参数说明 a:需要排序的数组。 axis:沿着哪个轴排序,默认为最后一个维度。 kind:排序算法类型,可以为‘quicksort’, ‘mergesort’, ‘he…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy polyfit()(多项式拟合)函数的作用与使用方法

    Numpy的polyfit()函数是一个用于多项式拟合的工具。它可以根据一组给定的数据点以及多项式的阶数,计算出最小二乘意义下的多项式拟合系数。在科学计算领域中,数据拟合是一个非常常见的问题,特别是在物理和工程学科中尤为重要。Numpy的polyfit()函数提供了一种快速、简单和可靠的方式来解决这个问题。 下面是Numpy polyfit()的使用方法详解…

    2023年3月22日
    00
  • 详解Numpy hamming()(汉明窗口函数)的作用与使用方法

    Numpy库中的hamming函数主要用于生成一个hamming窗口函数。hamming窗口函数是一种常用的数字信号处理技巧,可以通过降低频谱泄露来使频谱分析更准确。 hamming函数的使用方法如下: numpy.hamming(M, sym=True) 其中,M为窗口长度,sym为可选参数,表示是否对窗口进行对称操作。默认为True,即对窗口进行对称操作…

    2023年3月22日
    00
合作推广
合作推广
分享本页
返回顶部