详解Numpy cross()(返回数组的叉积)函数的作用与使用方法

Numpy中的cross()函数是用于计算两个向量的叉积,也可以计算两个矩阵的行叉积或列叉积。在数学中,叉积通常用于描述两个向量的垂直关系,返回的向量与这两个向量都垂直。

使用方法

numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)

参数说明

  • a:第一个向量;
  • b:第二个向量;
  • axisa和axisb:用于确定a和b向量的叉积的轴。
  • 如果a和b都是二维数组,则可以指定axisa和axisb值,以指定在哪个轴上进行叉积运算;
  • 如果a和b是一维数组,则默认为-1,即最后一个轴;
  • axis:可以指定返回结果的轴。
  • 默认为-1,即最后一个轴,如果是二维数组,则可以指定其他值。

返回值:

  • 返回两个向量的叉积。

下面,我们通过两个实例来说明cross()函数的使用方法:

实例1

import numpy as np

# 创建两个向量
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# 通过cross()计算两个向量的叉积
c = np.cross(a, b)

print(c)

输出结果:

[-3  6 -3]

在上面的例子中,我们创建了两个一维数组a和b,然后使用cross()函数计算它们的叉积,返回的向量是两个向量叉积的结果。

实例2

import numpy as np

# 创建两个矩阵
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = np.array([[2, 2, 2], [3, 3, 3], [4, 4, 4]])

# 通过cross()计算两个矩阵的行叉积
c = np.cross(a, b, axisa=1, axisb=1)

print(c)

输出结果:

[[-2  4 -2]
 [-6 12 -6]
 [-8 16 -8]]

在这个例子中,我们创建了两个矩阵a和b,并使用cross()函数计算它们的行叉积,axisa和axisb分别指定行和列的轴。返回的矩阵的每一行都是a和b矩阵的对应行向量的叉积。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Numpy cross()(返回数组的叉积)函数的作用与使用方法 - Python技术站

(0)
上一篇 2023年3月22日
下一篇 2023年3月22日

相关文章

  • 详解Numpy resize()(改变数组的大小)函数的作用与使用方法

    Numpy中的resize()函数用于调整数组的大小,它的操作方式与reshape()函数有些相似,但resize()函数不会限制调整后数组的大小。 resize()函数的语法如下: numpy.resize(arr, shape) 其中,arr为需要调整大小的数组,shape为调整后的目标大小。需要注意的是,shape必须是一个整数或者是一个整数元组。 现…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy sqrt()(计算平方根函数)的作用与使用方法

    Numpy sqrt()函数是用来对数组中的每个元素进行平方根计算的。它可以接受一个数组作为输入,并返回一个新的数组,该数组包含了这些元素的平方根。 Numpy sqrt()的语法与参数 Numpy sqrt()函数的语法如下: numpy.sqrt(x, /, out=None, *, where=True, casting='same_kind…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy prod()(返回数组元素的乘积)函数的作用与使用方法

    简介 Numpy(NumPy官网)是Python中用于数值计算的重要库之一。其中,Prod()方法用于计算数组元素的乘积。在本文中,我们将深入探讨Numpy Prod()的作用与使用方法,包括其语法、参数、返回值等等。 Prod()语法 Prod()函数的语法如下: numpy.prod(a, axis=None, dtype=None, keepdims=…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy zeros()函数的作用与使用方法

    Numpy zeros()是一种用于创建数组的函数,它返回一个由零组成的数组。它可以用来创建多维数组,其形状和数据类型都可以自定义。它有以下特征: 通过输入数组的形状和数据类型来创建数组。 默认创建的数组元素都是0。 使用方法 numpy.zeros(shape, dtype=float, order='C') 参数解释: shape:数…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy trapz()(计算积分)函数的作用与使用方法

    Numpy库是Python中一个重要的科学计算库,其中的trapz()函数在数值积分中扮演着重要的角色。trapz()函数可以用来计算一组数值数据的积分值,它的输入参数为x和y,其中x是自变量的取值,y是对应自变量的函数值,输出为积分的结果值。 使用方法: numpy.trapz(y, x=None, dx=1.0, axis=-1) y: 数组,表示被积函…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy fft()(快速傅里叶变换)函数的作用与使用方法

    Numpy fft()函数是对一维或者二维的数组进行快速傅里叶变换(FFT),其函数原型为:numpy.fft.fft(a, n=None, axis=-1, norm=None),参数含义如下: a:接受一个实数组或复数数组 n:可选项,表示傅里叶变换的长度,如果不指定则默认为a的长度 axis:可选参数,表示进行傅里叶变换的轴,默认情况下,对于一维的数组…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy hstack()(水平堆叠数组)函数的作用与使用方法

    Numpy hstack()函数是用于水平堆叠两个数组(即在水平方向上合并数组)的函数。它将两个数组沿着水平方向(列方向)组合到一起,其中第一个数组位于左边,第二个数组位于右边。 下面我们来了解一下它的基本使用方法以及两个实例。 基本使用方法 numpy.hstack(tup) 其中,tup是一个包含两个数组及其组合的元组。 实例一 import numpy…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy argmin()(返回数组元素的最小值的索引)函数的作用与使用方法

    Numpy argmin()函数用于返回数组中指定轴上最小值的索引。在本攻略中,我将提供argmin()函数的使用方法、语法和参数设置,并展示两个实例来说明如何使用该函数。 函数的语法和参数设置 numpy.argmin(a, axis=None, out=None) 参数说明: a:数组。 axis:用于计算最小值的轴。如果未指定,则所有元素被视为单个数组…

    Numpy函数大全 2023年3月22日
    00
合作推广
合作推广
分享本页
返回顶部