Opencv 4-连接数

以下是关于Opencv 4-连接数的详细攻略。

Opencv 4-连接数基本原理

Opencv 4-连接数是一种常用的图像处理技术,用于在二值图像中查找连通域。具体实现方法包括:

  • cv2.findContours 函数:用于在二值图像中查找轮廓。

4-连接数基本原理是将二值图像中的像素点分为前景像素和背景像素,然后对前景像素进行连通标记,最通过查找连通域的边界,得到连通域的轮廓。

Opencv 4-连接数的使用方法

Opencv 库提供 cv2.findContours 函数,可以用于在二值图像中查轮廓。函数的基本语法如下:

contours, hierarchy = cv2.findContours(image, mode, method)

其中,image 表示待查找轮廓的二值图像,mode 表示轮廓查找模式,method 表示轮廓查找方法contours 表示查找到的轮廓,hierarchy 表示轮廓的层次结构。

示例说明

下面是两个 Opencv 4-连接数的示例:

示例1:使用 findContours 函数查找二值图像中的轮廓

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg', 0)

# 对像进行二值化处理
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 在原始图像中绘制轮廓
img_contours = cv2.drawContours(img, contours, -1, (0, 0, 255), 2)

# 显示原始图像和绘制轮廓后的图像
cv2.imshow('image', img_contours)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和绘制轮廓后的图像。

示例2:使用 findContours 函数查找二值图像中的廓

import cv2
import numpy as

# 读取图像img = cv2.imread('test.jpg', 0)

# 对图像进行二值化处理
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 在原始图像中绘制最大轮廓
max_area = 0
max_contour = None
for contour in contours:
    area = cv2.contourArea(contour)
    if area max_area:
        max_area = area
        max_contour = contour
img_contours = cv2.drawContours(img, [max_contour], -1, (0, 0, 255), 2)

# 显示原始图和绘制轮廓后的图像
cv.imshow('image', img_contours)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和绘制轮廓后的图像。

结论

Opencv 4-连接数是种用的图像处理技术,用于在二值图像中查找连通域。通过 Opencv 中的 cv2.findContours 函数,可以实现对二值图像的轮廓查找。通过本文介绍,应该已经了解 Opencv 4-连接数的基本原理方法和两个示例说明,根据需要灵使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 4-连接数 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 离散余弦变换

    Opencv 离散余弦变换的完整攻略 Opencv 离散余弦变换是一种常见的图像处理技术,可以用于图像的压缩、特征提取等操作。本文将详细讲解Opencv 离散弦变换的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 离散余弦变换的基本原理 Opencv 离散余弦变换是一种基于离散余弦变换的图像处理技术,通过对图像进行频域分析,现图像的压缩、特征提取…

    python 2023年5月10日
    00
  • Opencv Random Cropping

    OpenCV 中的 RandomCropping 是一种图像增强技术,它可以通过随机裁剪图像来增加数据集的多样性。在 OpenCV 中,可以使用 cv2.random_crop 函数来实现 RandomCropping。 使用 RandomCropping 的基本步骤如下: 读取图像 随机裁剪图像 显示裁剪后的图像 以下是两个示例说明: 示例一:使用 Ran…

    python 2023年5月11日
    00
  • Opencv HSV 变换

    OpenCV HSV变换 OpenCV中的HSV变换是一种常用的颜色空间变换方法,可以将RGB图像转换为HSV图像。HSV颜色空间由色(Hue)、饱和度(Saturation)和亮度(Value)三个分量组成,与RGB颜色空间相比,HSV颜色空间更符合人类视觉感知。本文将介绍HSV变换的基本原理和使用方法,并提供两个示例说明。 HSV变换的基本原理 HSV颜…

    python 2023年5月10日
    00
  • Opencv k-平均聚类算法第一步

    以下是关于Opencv k-平均聚类算法第一步的详细攻略。 Opencv k-平均聚类算法第一步基本原理 k-平均聚类算法是一种无监督学习算法,将数据集分成k个簇,每个簇包含最接近的数据点。该算法的基本思想是通过不断迭代,将点分配到最近的簇中,然后重新计算簇的中心点直到簇的中心点不再发生变化。 Opencv-平均聚类算法第一步的步骤 读取数据 随机初始化k个…

    python 2023年5月10日
    00
  • Opencv二值化

    OpenCV二值化 OpenCV二值化是一种将灰度图像转换为二值图像的方法。二值图像只包含黑色和白色两种颜色,可以用于图像处理中的多应用,如边缘检测、形态学操作等。本文将介绍OpenCV二值化的基本概念和使用方法,并提供两个示例说明。 OpenCV二值化的基本概念 OpenCV二值化是一种将灰度图像转换为二值图像方法。二值图像只包含黑色和白色两种颜色,可以用…

    python 2023年5月10日
    00
  • Opencv 霍夫逆变换

    Opencv 霍夫逆变换是一种基于霍夫变换的图像处理技术,可以将霍夫变换后的参数空间转换回图像空间,从而实现对图像的分割和重建。本文将细讲解 Opencv 霍夫逆变换的完整攻略,包括基本原理、方法和两个示例。 Opencv 霍夫逆变换的基本原理 Opencv 霍夫逆变换是一种基于霍夫变换的图像处理技术,可以将霍夫变换后的参数空间转换回图像空间,从而实现对图像…

    python 2023年5月10日
    00
  • Opencv 使用绝对值差和进行模式匹配

    以下是关于Opencv 使用绝对值差和进行模式匹配的详细讲解。 Opencv 使用绝对值差和进行模式匹配基本原理 Opencv 使用绝对值差和进行模式匹配是一种常用的图像处理技术,可以用于在图像中查找指定的模式。具体实方法包括: cv2.absdiff 函数:用于计算两个图像的绝对值差。 cv2.threshold:用于对图像进行二值化处理。 cv.find…

    python 2023年5月10日
    00
  • Opencv 开运算

    Opencv 开运算是一种常用的图像处理技术,可以用于去除图像中的噪点和细小的物体,同时也可以用于图像的形态学处理。本文将详细讲解Opencv运算的完整攻略,包括基本原理、方法和两个示例。 Opencv 开运算的基本原理 Opencv 开运算是一种基于形态学的处理技术,通过对图像进行腐蚀和胀操作,可以去除图像中的噪点和细小的物体,同时也用于图像的形态学处理。…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部