这里简单记录和概述学习目标检测算法的心得,尽可能的详细一些,但限于写博客的一些语法和格式不是很好,所以请阅读者见谅!

概述:1、什么是目标检测

   2、目标检测任务描述

     2.1、目标检测算法分类(接下来我会更新常见的目标检测算法原理)

      2.2、目标检测的常见指标

      2.3、目标定位的简单实现

1、什么是目标检测

目标检测定义

识别图片中有哪些物体以及物体的位置(坐标位置)

(一)目标检测概述

什么是物体

即图像中存在的物体对象,但是能检测哪些物体会受到人为设定限制。

目标检测中能检测出来的物体取决于当前任务(数据集)需要检测的物体有哪些。假设我们的目标检测模型定位是检测动物(牛、羊、猪、狗、猫五种结果),那么模型对任何一张图片输出结果不会输出鸭子、书籍等其它类型结果。

什么是位置

目标检测的位置信息一般由两种格式(以图片左上角为原点(0,0)):

  • 极坐标表示:(xmin, ymin, xmax, ymax)
    • xmin,ymin:x,y坐标的最小值
    • xmin,ymin:x,y坐标的最大值
  • 中心点坐标:(x_center, y_center, w, h)
    • x_center, y_center:目标检测框的中心点坐标
    • w,h:目标检测框的宽、高

 假设这个图像是1000x800,所有这些坐标都是构建在像素层面上:

(一)目标检测概述

中心点坐标结果如下:

(一)目标检测概述

目标检测的技术发展历史

  • 传统目标检测方法(候选区域+手工特征提取+分类器)
    • HOG+SVM、DPM
  • region proposal+CNN提取分类的目标检测框架
    • (R-CNN, SPP-NET, Fast R-CNN, Faster R-CNN)
  • 端到端(End-to-End)的目标检测框架
    • YOLO、SSD

2、目标检测任务描述

2.1 目标检测算法分类

  • 两步走的目标检测:先进行区域推荐,而后进行目标分类

    • 代表:R-CNN、SPP-net、Fast R-CNN、Faster R-CNN
  • 端到端的目标检测:采用一个网络一步到位

    • 代表:YOLO、SSD

(一)目标检测概述

2.2 目标检测的任务

2.2.1 分类原理

先来回顾下分类的原理,这是一个常见的CNN组成图,输入一张图片,经过其中卷积、激活、池化相关层,最后加入全连接层达到分类概率的效果

 (一)目标检测概述

  • 分类的损失与优化

在训练的时候需要计算每个样本的损失,那么CNN做分类的时候使用softmax函数计算结果,损失为交叉熵损失

(一)目标检测概述

  • 常见CNN模型

(一)目标检测概述

对于目标检测来说不仅仅是分类这样简单的一个图片输出一个结果,而且还需要输出图片中目标的位置信息,所以从分类到检测,如下图标记了过程:

  • 分类

(一)目标检测概述

  • 分类+定位(只有一个对象的时候)

(一)目标检测概述

  • 目标检测

2.3 检测的任务

分类:

  • N个类别
  • 输入:图片
  • 输出:类别标签
  • 评估指标:Accuracy

(一)目标检测概述

定位:

  • N个类别
  • 输入:图片
  • 输出:物体的位置坐标
  • 主要评估指标:IOU

(一)目标检测概述

其中我们得出来的(x,y,w,h)有一个专业的名词,叫做bounding box(bbox).

2.3.1 两种Bounding box名称

在目标检测当中,对bbox主要由两种类别。

  • Ground-truth bounding box:图片当中真实标记的框
  • Predicted bounding box:预测的时候标记的框

 (一)目标检测概述

一般在目标检测当中,我们预测的框有可能很多个,真实框GT也有很多个。

2.4 检测的评价指标

任务 description 输入 输出 评价标准

Detection and

Localization (检测和定位)

在输入图片中找出存在的物

体类别和位置(可能存在多种物体)

图片(image )

类别标签(categories)和

位置(bbox(x,y,w,h))

IoU (Intersection over Union)

mAP (Mean Average Precision)

 

  • IoU(交并比)

    • 两个区域的重叠程度overlap:侯选区域和标定区域的IoU值

(一)目标检测概述

2.5 目标定位的简单实现

在分类的时候我们直接输出各个类别的概率,如果再加上定位的话,我们可以考虑在网络的最后输出加上位置信息。

2.5.1 回归位置

增加一个全连接层,即为FC1、FC2

  • FC1:作为类别的输出

  • FC2:作为这个物体位置数值的输出

(一)目标检测概述

假设有10个类别,输出[p1,p2,p3,...,p10],然后输出这一个对象的四个位置信息[x,y,w,h]。同理知道要网络输出什么,如果衡量整个网络的损失

  • 对于分类的概率,还是使用交叉熵损失
  • 位置信息具体的数值,可使用MSE均方误差损失(L2损失)

如下图所示

(一)目标检测概述

 2.5.2 位置数值的处理

对于输出的位置信息是四个比较大的像素大小值,在回归的时候不适合。目前统一的做法是,每个位置除以图片本身像素大小。

假设以中心坐标方式,那么x = x/x_image,y/y_image, w/x_image,h/y_image,也就是这几个点最后都变成了0~1之间的值(归一化)。