Pytorch中的BatchNorm的API主要有:
1 torch.nn.BatchNorm1d(num_features, 2 3 eps=1e-05, 4 5 momentum=0.1, 6 7 affine=True, 8 9 track_running_stats=True)
一般来说pytorch中的模型都是继承nn.Module
类的,都有一个属性trainning
指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层。通常用model.train()
指定当前模型model
为训练状态,model.eval()
指定当前模型为测试状态。
同时,BN的API中有几个参数需要比较关心的,一个是affine
指定是否需要仿射,还有个是track_running_stats
指定是否跟踪当前batch的统计特性。容易出现问题也正好是这三个参数:trainning
,affine
,track_running_stats
。
- 其中的
affine
指定是否需要仿射,也就是是否需要上面算式的第四个,如果affine=False
则0,并且不能学习被更新。一般都会设置成affine=True
[10] -
trainning
和track_running_stats
,track_running_stats=True
表示跟踪整个训练过程中的batch的统计特性,得到方差和均值,而不只是仅仅依赖与当前输入的batch的统计特性。相反的,如果track_running_stats=False
那么就只是计算当前输入的batch的统计特性中的均值和方差了。当在推理阶段的时候,如果track_running_stats=False
,此时如果batch_size
比较小,那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果。
一般来说,trainning
和track_running_stats
有四种组合[7]
-
trainning=True
,track_running_stats=True
。这个是期望中的训练阶段的设置,此时BN将会跟踪整个训练过程中batch的统计特性。 -
trainning=True
,track_running_stats=False
。此时BN只会计算当前输入的训练batch的统计特性,可能没法很好地描述全局的数据统计特性。 -
trainning=False
,track_running_stats=True
。这个是期望中的测试阶段的设置,此时BN会用之前训练好的模型中的(假设已经保存下了)running_mean
和running_var
并且不会对其进行更新。一般来说,只需要设置model.eval()
其中model
中含有BN层,即可实现这个功能。[6,8] -
trainning=False
,track_running_stats=False
效果同(2),只不过是位于测试状态,这个一般不采用,这个只是用测试输入的batch的统计特性,容易造成统计特性的偏移,导致糟糕效果。
同时,我们要注意到,BN层中的running_mean
和running_var
的更新是在forward()
操作中进行的,而不是optimizer.step()
中进行的,因此如果处于训练状态,就算你不进行手动step()
,BN的统计特性也会变化的。如
1 model.train() # 处于训练状态 2 3 4 for data, label in self.dataloader: 5 6 pred = model(data) 7 8 # 在这里就会更新model中的BN的统计特性参数,running_mean, running_var 9 10 loss = self.loss(pred, label) 11 12 # 就算不要下列三行代码,BN的统计特性参数也会变化 13 14 opt.zero_grad() 15 16 loss.backward() 17 18 opt.step()
这个时候要将model.eval()
转到测试阶段,才能固定住running_mean
和running_var
。有时候如果是先预训练模型然后加载模型,重新跑测试的时候结果不同,有一点性能上的损失,这个时候十有八九是trainning
和track_running_stats
设置的不对,这里需要多注意。 [8]
[1]. 用pytorch踩过的坑
[2]. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on International Conference on Machine Learning. JMLR.org, 2015:448-456.
[3]. <深度学习优化策略-1>Batch Normalization(BN)
[4]. 详解深度学习中的Normalization,BN/LN/WN
[5]. https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py#L23-L24
[7]. BatchNorm2d增加的参数track_running_stats如何理解?
[8]. Why track_running_stats is not set to False during eval
[9]. How to train with frozen BatchNorm?
[10]. Proper way of fixing batchnorm layers during training
[11]. 大白话《Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift》
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch中的Batch Normalization - Python技术站