Opencv Hilditch 细化算法

以下是关于Opencv Hilditch细化算法的详细攻略。

Opencv Hilditch细化算法基本原理

Opencv Hilditch细化算法是一种常用的图像处理技术,用于对二值图像进行细化处理。具体实现方法包括:

  • 对二值图像进行腐蚀操作
  • 对蚀后的像素点进行判断和删除操作

Hilditch细化算法的基本原理是通过对二值图像进行腐蚀操作,将像的像素点逐渐缩小,然后对缩小后的像素点进行判断和删除操作,最终得到细化后的图像。

Opencv Hilditch细化算法的使用方法

Opencv 库提供 cv2imgproc.thinning 函数,用于对二值图像进行细化处理。函数的基本语法如:

thinned = cv2.ximgproc.thinning(image, thinningType)

其中,image 表示待细化的二值图像,thinningType 表示细化算法的类型,thinned 表细化后的图像。

示例说明

下面是两个 Opencv Hilditch细化算法的示:

示例1:使用 thinning 函数对二值图像进行细化处理

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg', 0)

# 对图像进行值化处理
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 对二值图像进行细化处理
thinned = cv2.ximgproc.thinning(thresh, cv2.ximgproc.THINNING_GUOHALL)

# 显示原始图像和细化处理后的图像
cv2.imshow('image', np.hstack((thresh, thinned)))
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和细化处理后的图像。

示例2:使用 thinning 函数对手写数字进行细化处理

import cv2
import numpy as np

# 读取图像
img = cv2.imread('digits.png', 0)

# 将图像分割成 50x50 的小图像
cells = [np.hsplit(row, 100) for row in np.vsplit(img, 50)]

# 将小图像转换为数组
x = np.array(cells)

# 将数组转换为 5000x400 的矩阵
train = x.reshape(-1, 400).astype(np.float32)

# 对矩阵进行 KMeans 聚类
kmeans = cv2.KMeans(n_clusters=10)
kmeans.fit(train)

# 对手写数字进行细化处理
digits = cv2.imread('digits.png', 0)
rows, cols = digits.shape
for i in range(rows):
    for j in range(cols):
        if digits[i, j] < 128:
            digits[i, j] = 0
        else:
            digits[i, j] = 255
digits = cv2.bitwise_not(digits)
for i in range(rows):
    for j in range(cols):
        if digits[i, j] == 255:
            digits[i, j] = 1
        else:
            digits[i, j] = 0
digits = cv2.ximgproc.thinning(digits, cv2.ximgproc.THINNING_GUOHALL)

# 显示细化处理后的图像
cv2.imshow('image', digits)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示手写数字的细化处理后的图像。

结论

Opencv Hilditch细化算法是一种常用的图像处理技术,用于对二值图像进行细化处理。通过 Opencv 中的 cv2.ximgproc.thinning 函数,可以实现对二值图像的细化处理。通过本文介绍,应该已经了解 Opencv Hilditch细化算法的基本原理、方法和两个示例说明,根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv Hilditch 细化算法 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Python OpenCV – startWindowThread()

    以下是关于Python OpenCV-startWindowThread()的完整攻略。 Python OpenCV-startWindowThread()基本原理 startWindowThread()是OpenCV中的一个函数,用于启动窗口线程。在使用OpenCV进行图像处理,我们通常需要在窗口中显示图像。但是,如果我们在主线程中显示图像,会导致程序阻塞…

    python 2023年5月11日
    00
  • Opencv 均值滤波

    OpenCV均值滤波 OpenCV均值滤波是一种图像处理方法,可以用于图像平滑和降噪等应用。本文将介绍OpenCV均值滤波的基本原理和使用方法,并提供两个示例。 OpenCV均值滤波的基本原理 OpenCV均值滤波是一种线性平滑滤波器,可以用于图像平滑和降噪等应用。均值滤波的基本思想是对图像中的每个像素点取周围像素的平均值,从而得到一个平滑的图像。OpenC…

    python 2023年5月10日
    00
  • Opencv 最大池化

    OpenCV最大池化 OpenCV最大池化是一种图像处理方法,可以用于图像降采样和特征提取等应用。本文将介绍OpenCV最大池化的基本原理和使用方法,并提供两个示例说明。 OpenCV最大池化的基本原理 OpenCV最大池化是一种图像处理方法,可以用于图像降采样和特征提取等应用。最大池化的基本思想是将图像分成若干个区域,对每个区域的像素值取最大值,从而得到一…

    python 2023年5月10日
    00
  • Opencv 霍夫变换

    Opencv 霍夫变换的完整攻略 Opencv 霍夫变换是一种常用的图像处理技术,可以用于直线和圆的检测、形状匹等。本文将详细讲解Opencv 霍夫变换的完整攻略,包括基本原理、方法和两个示例。 Opencv 霍夫变换的基本原理 Opencv 霍夫变换是一种基于数学变换的图像处理技术,通过将图像中的素点映射到霍夫空间中,实现对直线和圆的检测。其中,直线检测是…

    python 2023年5月10日
    00
  • Opencv 使用零均值归一化交叉相关进行模式匹配

    以下是关于Opencv 使用零均值归一化交叉相关进行模式匹配的详细讲解。 Opencv 使用零均值归一化交叉相关进行模式匹配基本原理 Opencv 零均值归一化交叉相关进行模式匹配是一种常用的图像处理技术,可以用于在图像中查找指定的模式。具体实现方法包括: cv2.matchTemplate 函数:用于对图像进行模板匹配操作。 cv2.minMaxLoc 函…

    python 2023年5月10日
    00
  • Opencv 最邻近插值

    OpenCV 最邻近插值 OpenCV 最邻近插值是一种用于图像处理和计算机视觉的重要工具,可以用于图像的缩放和旋转。本文将介绍OpenCV邻近插值的基本理和使用方法,并提供两个示例。 OpenCV 最邻近插值的基本原理 OpenCV 最邻近插值是一种图缩放和旋转的,它的基原理是通过在原始图像中找到最近的像素点,来计算目标图像中的像素值。最近插值的具体实现方…

    python 2023年5月10日
    00
  • Opencv 简单图像识别第三步

    以下是关于Opencv简单图像识别第三步的详细攻略。 Opencv简单图像识别第三步基本原理 Opencv简单图像识别第步是指通过Opencv库的机器学习算法对处理后的图像进行特征匹配,从而实现对目标图像的识别。常用的机器学习算法包括K、SVM、神经网络等。 Opencv简单图像识别第三步的步骤 读取训练数据 提训练数据的特征 训练机器学习模型 读取测试数据…

    python 2023年5月10日
    00
  • Opencv 腐蚀

    Opencv 腐蚀是一种常用的图像处理技术,可以用于去除图像中的噪点和细小的物体,同时也可以用于图像的形态学处理。本文将详细讲解Opencv 腐蚀的完整攻略,包括基本原理、方法和两个示例。 Opencv 腐蚀的基本原理 Opencv 腐蚀是一种基于图像形态学的处理技术,通过对图像中的像素进行操作,可以将像素值变小,从而使得图像中的物体变小消失。具体现方法包括…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部