Opencv Hilditch 细化算法

以下是关于Opencv Hilditch细化算法的详细攻略。

Opencv Hilditch细化算法基本原理

Opencv Hilditch细化算法是一种常用的图像处理技术,用于对二值图像进行细化处理。具体实现方法包括:

  • 对二值图像进行腐蚀操作
  • 对蚀后的像素点进行判断和删除操作

Hilditch细化算法的基本原理是通过对二值图像进行腐蚀操作,将像的像素点逐渐缩小,然后对缩小后的像素点进行判断和删除操作,最终得到细化后的图像。

Opencv Hilditch细化算法的使用方法

Opencv 库提供 cv2imgproc.thinning 函数,用于对二值图像进行细化处理。函数的基本语法如:

thinned = cv2.ximgproc.thinning(image, thinningType)

其中,image 表示待细化的二值图像,thinningType 表示细化算法的类型,thinned 表细化后的图像。

示例说明

下面是两个 Opencv Hilditch细化算法的示:

示例1:使用 thinning 函数对二值图像进行细化处理

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg', 0)

# 对图像进行值化处理
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 对二值图像进行细化处理
thinned = cv2.ximgproc.thinning(thresh, cv2.ximgproc.THINNING_GUOHALL)

# 显示原始图像和细化处理后的图像
cv2.imshow('image', np.hstack((thresh, thinned)))
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和细化处理后的图像。

示例2:使用 thinning 函数对手写数字进行细化处理

import cv2
import numpy as np

# 读取图像
img = cv2.imread('digits.png', 0)

# 将图像分割成 50x50 的小图像
cells = [np.hsplit(row, 100) for row in np.vsplit(img, 50)]

# 将小图像转换为数组
x = np.array(cells)

# 将数组转换为 5000x400 的矩阵
train = x.reshape(-1, 400).astype(np.float32)

# 对矩阵进行 KMeans 聚类
kmeans = cv2.KMeans(n_clusters=10)
kmeans.fit(train)

# 对手写数字进行细化处理
digits = cv2.imread('digits.png', 0)
rows, cols = digits.shape
for i in range(rows):
    for j in range(cols):
        if digits[i, j] < 128:
            digits[i, j] = 0
        else:
            digits[i, j] = 255
digits = cv2.bitwise_not(digits)
for i in range(rows):
    for j in range(cols):
        if digits[i, j] == 255:
            digits[i, j] = 1
        else:
            digits[i, j] = 0
digits = cv2.ximgproc.thinning(digits, cv2.ximgproc.THINNING_GUOHALL)

# 显示细化处理后的图像
cv2.imshow('image', digits)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示手写数字的细化处理后的图像。

结论

Opencv Hilditch细化算法是一种常用的图像处理技术,用于对二值图像进行细化处理。通过 Opencv 中的 cv2.ximgproc.thinning 函数,可以实现对二值图像的细化处理。通过本文介绍,应该已经了解 Opencv Hilditch细化算法的基本原理、方法和两个示例说明,根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv Hilditch 细化算法 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 色彩追踪

    以下是关于Opencv色彩追踪的详细攻略。 Opencv色彩追踪基本原理 Opencv色彩追踪是一种常用的图像处理技术,用于对图像中特定颜色进行追踪。具体实现方法包括: 将图像从 RGB 颜色空间转换为 HSV 颜色空间 根据颜色的 HSV 值,提取图像中特定颜色的像素 对提取的像素进行处理,如二值化、形态学等 对处理后的像素进行轮廓检测,找到目标区域 色彩…

    python 2023年5月10日
    00
  • Opencv 霍夫变换

    Opencv 霍夫变换的完整攻略 Opencv 霍夫变换是一种常用的图像处理技术,可以用于直线和圆的检测、形状匹等。本文将详细讲解Opencv 霍夫变换的完整攻略,包括基本原理、方法和两个示例。 Opencv 霍夫变换的基本原理 Opencv 霍夫变换是一种基于数学变换的图像处理技术,通过将图像中的素点映射到霍夫空间中,实现对直线和圆的检测。其中,直线检测是…

    python 2023年5月10日
    00
  • Opencv 均值滤波

    OpenCV均值滤波 OpenCV均值滤波是一种图像处理方法,可以用于图像平滑和降噪等应用。本文将介绍OpenCV均值滤波的基本原理和使用方法,并提供两个示例。 OpenCV均值滤波的基本原理 OpenCV均值滤波是一种线性平滑滤波器,可以用于图像平滑和降噪等应用。均值滤波的基本思想是对图像中的每个像素点取周围像素的平均值,从而得到一个平滑的图像。OpenC…

    python 2023年5月10日
    00
  • Opencv YCbCr 色彩空间

    Opencv YCbCr色彩空间的完整攻略 Opencv YCbCr色彩空间是一种常用的图像处理技术,可以用于图像的压缩、颜色空间转换等操作。本文将详细讲解Opencv YCbCr色彩空间的完整攻略,包括基本原理、方法和两个示例说明。 Opencv YCbCr色彩空间的基本原理 Opencv YCbCr色彩空间是一种基于亮度和色度分离的颜色间,通过将RGB颜…

    python 2023年5月10日
    00
  • Opencv 色彩追踪 形态学处理

    OpenCV 中的色彩追踪形态学处理是一种图像处理技术,它可以通过对图像进行形态学处理来实现对特定颜色的追踪。在 OpenCV 中,可以使用 cv2.inRange() 函数来实现色彩追踪,使用形态学处理函数来对图像进行处理。 使用 cv2.inRange() 函数的基本语法如下: mask = cv2.inRange(image, lower, upper…

    python 2023年5月11日
    00
  • Opencv Canny边缘检测 边缘细化

    Opencv Canny边缘检测边缘细化的完整攻略 Opencv Canny边缘检测边缘细化是一种常用的图像处理技术,可以用于图像的边缘检测和边缘细化。本文将详细讲解Opencv Canny边缘检测边缘细化的完整攻略,包括基本原理、方法和两个示例。 Opencv Canny边缘检测边缘细化的基本原理 Opencv Canny边缘检测边缘细化是一种基于梯度计算…

    python 2023年5月10日
    00
  • Opencv 离散余弦变换

    Opencv 离散余弦变换的完整攻略 Opencv 离散余弦变换是一种常见的图像处理技术,可以用于图像的压缩、特征提取等操作。本文将详细讲解Opencv 离散弦变换的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 离散余弦变换的基本原理 Opencv 离散余弦变换是一种基于离散余弦变换的图像处理技术,通过对图像进行频域分析,现图像的压缩、特征提取…

    python 2023年5月10日
    00
  • Opencv 伽玛校正

    OpenCV 伽马校正 OpenCV 伽马校正是一种用于图像处理和计算机视觉的重要工具,可以用于调整图像的亮度和对比度。本文将介绍OpenCV 伽马校正的基本原理和使用方法,并提供两个示例。 OpenCV 伽马校正的基本原理 OpenCV 伽马校正是一种线性变换,可以用于调整图像的亮度和对比度。伽马校正的基本原理是通过对图像像素值进行幂次变换,调整图像亮度和…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部