https://blog.csdn.net/a8039974/article/details/77592389

 

Faster RCNN github : https://github.com/rbgirshick/py-faster-rcnn

Faster RCNN paper : https://arxiv.org/abs/1506.01497

Bound box regression详解 : http://download.csdn.net/download/zy1034092330/9940097(来源:王斌_ICT

 

缩进经过RCNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。

[转]CNN目标检测(一):Faster RCNN详解

图1 Faster CNN基本结构(来自原论文)

缩进依作者看来,如图1,Faster RCNN其实可以分为4个主要内容:

  1. Conv layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。
  2. Region Proposal Networks。RPN网络用于生成region proposals。该层通过softmax判断anchors属于foreground或者background,再利用bounding box regression修正anchors获得精确的proposals。
  3. Roi Pooling。该层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,送入后续全连接层判定目标类别。
  4. Classification。利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得检测框最终的精确位置。

所以本文以上述4个内容作为切入点介绍Faster RCNN网络。

缩进图2展示了python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成foreground anchors与bounding box regression偏移量,然后计算出proposals;而Roi Pooling层则利用proposals从feature maps中提取proposal feature送入后续全连接和softmax网络作classification(即分类proposal到底是什么object)。

path:${py-faster-rcnn-root}/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt

[转]CNN目标检测(一):Faster RCNN详解

图2 faster_rcnn_test.pt网络结构

1 Conv layers

缩进Conv layers包含了conv,pooling,relu三种层。以python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构为例,如图2,Conv layers部分共有13个conv层,13个relu层,4个pooling层。这里有一个非常容易被忽略但是又无比重要的信息,在Conv layers中:

  1. 所有的conv层都是:kernel_size=3,pad=1
  2. 所有的pooling层都是:kernel_size=2,stride=2

为何重要?在Faster RCNN Conv layers中对所有的卷积都做了扩边处理(pad=1,即填充一圈0),导致原图变为(M+2)x(N+2)大小,再做3x3卷积后输出MxN。正是这种设置,导致Conv layers中的conv层不改变输入和输出矩阵大小。如图3:

[转]CNN目标检测(一):Faster RCNN详解

图3

类似的是,Conv layers中的pooling层kernel_size=2,stride=2。这样每个经过pooling层的MxN矩阵,都会变为(M/2)*(N/2)大小。综上所述,在整个Conv layers中,conv和relu层不改变输入输出大小,只有pooling层使输出长宽都变为输入的1/2。

缩进那么,一个MxN大小的矩阵经过Conv layers固定变为(M/16)x(N/16)!这样Conv layers生成的featuure map中都可以和原图对应起来。

 

2 Region Proposal Networks(RPN)

缩进经典的检测方法生成检测框都非常耗时,如OpenCV adaboost使用滑动窗口+图像金字塔生成检测框;或如RCNN使用SS(Selective Search)方法生成检测框。而Faster RCNN则抛弃了传统的滑动窗口和SS方法,直接使用RPN生成检测框,这也是Faster RCNN的巨大优势,能极大提升检测框的生成速度。

[转]CNN目标检测(一):Faster RCNN详解

图4 RPN网络结构

上图4展示了RPN网络的具体结构。可以看到RPN网络实际分为2条线,上面一条通过softmax分类anchors获得foreground和background(检测目标是foreground),下面一条用于计算对于anchors的bounding box regression偏移量,以获得精确的proposal。而最后的Proposal层则负责综合foreground anchors和bounding box regression偏移量获取proposals,同时剔除太小和超出边界的proposals。其实整个网络到了Proposal Layer这里,就完成了相当于目标定位的功能。

2.1 多通道图像卷积基础知识介绍

缩进在介绍RPN前,还要多解释几句基础知识,已经懂的看官老爷跳过就好。
  1. 对于单通道图像+单卷积核做卷积,第一章中的图3已经展示了;
  2. 对于多通道图像+多卷积核做卷积,计算方式如下:
[转]CNN目标检测(一):Faster RCNN详解
图5 多通道+多卷积核做卷积示意图(摘自Theano教程)
缩进如图5,输入图像layer m-1有4个通道,同时有2个卷积核w1和w2。对于卷积核w1,先在输入图像4个通道分别作卷积,再将4个通道结果加起来得到w1的卷积输出;卷积核w2类似。所以对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量!
缩进对多通道图像做1x1卷积,其实就是将输入图像于每个通道乘以卷积系数后加在一起,即相当于把原图像中本来各个独立的通道“联通”在了一起。

2.2 anchors

缩进提到RPN网络,就不能不说anchors。所谓anchors,实际上就是一组由rpn/generate_anchors.py生成的矩形。直接运行作者demo中的generate_anchors.py可以得到以下输出:

[[ -84.  -40.   99.   55.]
 [-176.  -88.  191.  103.]
 [-360. -184.  375.  199.]
 [ -56.  -56.   71.   71.]
 [-120. -120.  135.  135.]
 [-248. -248.  263.  263.]
 [ -36.  -80.   51.   95.]
 [ -80. -168.   95.  183.]
 [-168. -344.  183.  359.]]

  

其中每行的4个值[x1,y1,x2,y2]代表矩形左上和右下角点坐标。9个矩形共有3种形状,长宽比为大约为:width:height = [1:1, 1:2, 2:1]三种,如图6。实际上通过anchors就引入了检测中常用到的多尺度方法。

[转]CNN目标检测(一):Faster RCNN详解

图6 anchors示意图

注:关于上面的anchors size,其实是根据检测图像设置的。在python demo中,会把任意大小的输入图像reshape成800x600(即图2中的M=800,N=600)。再回头来看anchors的大小,anchors中长宽1:2中最大为352x704,长宽2:1中最大736x384,基本是cover了800x600的各个尺度和形状。

那么这9个anchors是做什么的呢?借用Faster RCNN论文中的原图,如图7,遍历Conv layers计算获得的feature maps,为每一个点都配备这9种anchors作为初始的检测框。这样做获得检测框很不准确,不用担心,后面还有2次bounding box regression可以修正检测框位置。

[转]CNN目标检测(一):Faster RCNN详解

图7

解释一下上面这张图的数字。

  1. 在原文中使用的是ZF model中,其Conv Layers中最后的conv5层num_output=256,对应生成256张特征图,所以相当于feature map每个点都是256-d
  2. 在conv5之后,做了rpn_conv/3x3卷积且num_output=256,相当于每个点又融合了周围3x3的空间信息(猜测这样做也许更鲁棒?反正我没测试),同时256-d不变(如图4和图7中的红框)
  3. 假设在conv5 feature map中每个点上有k个anchor(默认k=9),而每个anhcor要分foreground和background,所以每个点由256d feature转化为cls=2k scores;而每个anchor都有[x, y, w, h]对应4个偏移量,所以reg=4k coordinates
  4. 补充一点,全部anchors拿去训练太多了,训练程序会在合适的anchors中随机选取128个postive anchors+128个negative anchors进行训练(什么是合适的anchors下文5.1有解释)

注意,在本文讲解中使用的VGG conv5 num_output=512,所以是512d,其他类似.....

2.3 softmax判定foreground与background

 

缩进一副MxN大小的矩阵送入Faster RCNN网络后,到RPN网络变为(M/16)x(N/16),不妨设W=M/16,H=N/16。在进入reshape与softmax之前,先做了1x1卷积,如图8:
[转]CNN目标检测(一):Faster RCNN详解
图8 RPN中判定fg/bg网络结构
该1x1卷积的caffe prototxt定义如下:

layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  convolution_param {
    num_output: 18   # 2(bg/fg) * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
  }
}

  

可以看到其num_output=18,也就是经过该卷积的输出图像为WxHx18大小(注意第二章开头提到的卷积计算方式)。这也就刚好对应了feature maps每一个点都有9个anchors,同时每个anchors又有可能是foreground和background,所有这些信息都保存WxHx(9x2)大小的矩阵。为何这样做?后面接softmax分类获得foreground anchors,也就相当于初步提取了检测目标候选区域box(一般认为目标在foreground anchors中)。
缩进那么为何要在softmax前后都接一个reshape layer?其实只是为了便于softmax分类,至于具体原因这就要从caffe的实现形式说起了。在caffe基本数据结构blob中以如下形式保存数据:
blob=[batch_size, channel,height,width]
对应至上面的保存bg/fg anchors的矩阵,其在caffe blob中的存储形式为[1, 2*9, H, W]。而在softmax分类时需要进行fg/bg二分类,所以reshape layer会将其变为[1, 2, 9*H, W]大小,即单独“腾空”出来一个维度以便softmax分类,之后再reshape回复原状。贴一段caffe softmax_loss_layer.cpp的reshape函数的解释,非常精辟:

"Number of labels must match number of predictions; "
"e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
"label count (number of labels) must be N*H*W, "
"with integer values in {0, 1, ..., C-1}.";

  

综上所述,RPN网络中利用anchors和softmax初步提取出foreground anchors作为候选区域。

2.4 bounding box regression原理

缩进介绍bounding box regression数学模型及原理。如图9所示绿色框为飞机的Ground Truth(GT),红色为提取的foreground anchors,那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准,这张图相当于没有正确的检测出飞机。所以我们希望采用一种方法对红色的框进行微调,使得foreground anchors和GT更加接近。

[转]CNN目标检测(一):Faster RCNN详解

图9

缩进对于窗口一般使用四维向量(x, y, w, h)表示,分别表示窗口的中心点坐标和宽高。对于图 10,红色的框A代表原始的Foreground Anchors,绿色的框G代表目标的GT,我们的目标是寻找一种关系,使得输入原始的anchor A经过映射得到一个跟真实窗口G更接近的回归窗口G',即:给定anchor A=(Ax, Ay, Aw, Ah),GT=[Gx, Gy, Gw, Gh],寻找一种变换F:使得F(Ax, Ay, Aw, Ah)=(G'x, G'y, G'w, G'h),其中(G'x, G'y, G'w, G'h)≈(Gx, Gy, Gw, Gh)。

[转]CNN目标检测(一):Faster RCNN详解

图10

那么经过何种变换F才能从图6中的anchor A变为G'呢? 比较简单的思路就是:

缩进 1. 先做平移

[转]CNN目标检测(一):Faster RCNN详解

缩进 2. 再做缩放

[转]CNN目标检测(一):Faster RCNN详解

缩进观察上面4个公式发现,需要学习的是dx(A),dy(A),dw(A),dh(A)这四个变换。当输入的anchor A与GT相差较小时,可以认为这种变换是一种线性变换, 那么就可以用线性回归来建模对窗口进行微调(注意,只有当anchors A和GT比较接近时,才能使用线性回归模型,否则就是复杂的非线性问题了)。对应于Faster RCNN原文,平移量(tx, ty)与尺度因子(tw, th)如下:

[转]CNN目标检测(一):Faster RCNN详解

缩进接下来的问题就是如何通过线性回归获得dx(A),dy(A),dw(A),dh(A)了。线性回归就是给定输入的特征向量X, 学习一组参数W, 使得经过线性回归后的值跟真实值Y非常接近,即Y=WX。对于该问题,输入X是一张经过卷积获得的feature map,定义为Φ;同时还有训练传入的GT,即(tx, ty, tw, th)。输出是dx(A),dy(A),dw(A),dh(A)四个变换。那么目标函数可以表示为:

[转]CNN目标检测(一):Faster RCNN详解

其中Φ(A)是对应anchor的feature map组成的特征向量,w是需要学习的参数,d(A)是得到的预测值(*表示 x,y,w,h,也就是每一个变换对应一个上述目标函数)。为了让预测值(tx, ty, tw, th)与真实值差距最小,设计损失函数:

[转]CNN目标检测(一):Faster RCNN详解

函数优化目标为:

[转]CNN目标检测(一):Faster RCNN详解

2.5 对proposals进行bounding box regression

缩进在了解bounding box regression后,再回头来看RPN网络第二条线路,如图11。

 

[转]CNN目标检测(一):Faster RCNN详解

图11 RPN中的bbox reg

先来看一看上图11中1x1卷积的caffe prototxt定义:

layer {
  name: "rpn_bbox_pred"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_bbox_pred"
  convolution_param {
    num_output: 36   # 4 * 9(anchors)
    kernel_size: 1 pad: 0 stride: 1
  }
}

  

可以看到其num_output=36,即经过该卷积输出图像为WxHx36,在caffe blob存储为[1, 36, H, W],这里相当于feature maps每个点都有9个anchors,每个anchors又都有4个用于回归的[dx(A),dy(A),dw(A),dh(A)]变换量。

2.6 Proposal Layer

缩进Proposal Layer负责综合所有[dx(A),dy(A),dw(A),dh(A)]变换量和foreground anchors,计算出精准的proposal,送入后续RoI Pooling Layer。还是先来看看Proposal Layer的caffe prototxt定义:

layer {
  name: 'proposal'
  type: 'Python'
  bottom: 'rpn_cls_prob_reshape'
  bottom: 'rpn_bbox_pred'
  bottom: 'im_info'
  top: 'rois'
  python_param {
    module: 'rpn.proposal_layer'
    layer: 'ProposalLayer'
    param_str: "'feat_stride': 16"
  }
}

  

Proposal Layer有3个输入:fg/bg anchors分类器结果rpn_cls_prob_reshape,对应的bbox reg的[dx(A),dy(A),dw(A),dh(A)]变换量rpn_bbox_pred,以及im_info;另外还有参数feat_stride=16,这和图4是对应的。
缩进首先解释im_info。对于一副任意大小PxQ图像,传入Faster RCNN前首先reshape到固定MxN,im_info=[M, N, scale_factor]则保存了此次缩放的所有信息。然后经过Conv Layers,经过4次pooling变为WxH=(M/16)x(N/16)大小,其中feature_stride=16则保存了该信息,用于计算anchor偏移量。
[转]CNN目标检测(一):Faster RCNN详解
图12
缩进Proposal Layer forward(caffe layer的前传函数)按照以下顺序依次处理:
  1. 生成anchors,利用[dx(A),dy(A),dw(A),dh(A)]对所有的anchors做bbox regression回归(这里的anchors生成和训练时完全一致)
  2. 按照输入的foreground softmax scores由大到小排序anchors,提取前pre_nms_topN(e.g. 6000)个anchors,即提取修正位置后的foreground anchors。
  3. 利用im_info将fg anchors从MxN尺度映射回PxQ原图,判断fg anchors是否大范围超过边界,剔除严重超出边界fg anchors。
  4. 进行nms(nonmaximum suppression,非极大值抑制)
  5. 再次按照nms后的foreground softmax scores由大到小排序fg anchors,提取前post_nms_topN(e.g. 300)结果作为proposal输出。
之后输出proposal=[x1, y1, x2, y2],注意,由于在第三步中将anchors映射回原图判断是否超出边界,所以这里输出的proposal是对应MxN输入图像尺度的,这点在后续网络中有用。另外我认为,严格意义上的检测应该到此就结束了,后续部分应该属于识别了~
 
RPN网络结构就介绍到这里,总结起来就是:
生成anchors -> softmax分类器提取fg anchors -> bbox reg回归fg anchors -> Proposal Layer生成proposals
 

3 RoI pooling

缩进而RoI Pooling层则负责收集proposal,并计算出proposal feature maps,送入后续网络。从图3中可以看到Rol pooling层有2个输入:

  1. 原始的feature maps
  2. RPN输出的proposal boxes(大小各不相同)

3.1 为何需要RoI Pooling

缩进先来看一个问题:对于传统的CNN(如AlexNet,VGG),当网络训练好后输入的图像尺寸必须是固定值,同时网络输出也是固定大小的vector or matrix。如果输入图像大小不定,这个问题就变得比较麻烦。有2种解决办法:

  1. 从图像中crop一部分传入网络
  2. 将图像warp成需要的大小后传入网络

[转]CNN目标检测(一):Faster RCNN详解

图13 crop与warp破坏图像原有结构信息

两种办法的示意图如图13,可以看到无论采取那种办法都不好,要么crop后破坏了图像的完整结构,要么warp破坏了图像原始形状信息。回忆RPN网络生成的proposals的方法:对foreground anchors进行bound box regression,那么这样获得的proposals也是大小形状各不相同,即也存在上述问题。所以Faster RCNN中提出了RoI Pooling解决这个问题(需要说明,RoI Pooling确实是从SPP发展而来,但是限于篇幅这里略去不讲,有兴趣的读者可以自行查阅相关论文)。

3.2 RoI Pooling原理

缩进分析之前先来看看RoI Pooling Layer的caffe prototxt的定义:

layer {
  name: "roi_pool5"
  type: "ROIPooling"
  bottom: "conv5_3"
  bottom: "rois"
  top: "pool5"
  roi_pooling_param {
    pooled_w: 7
    pooled_h: 7
    spatial_scale: 0.0625 # 1/16
  }
}

  

其中有新参数pooled_w=pooled_h=7,另外一个参数spatial_scale=1/16应该能够猜出大概吧。

缩进RoI Pooling layer forward过程:在之前有明确提到:proposal=[x1, y1, x2, y2]是对应MxN尺度的,所以首先使用spatial_scale参数将其映射回(M/16)x(N/16)大小的feature maps尺度(这里来回多次映射,是有点绕);之后将每个proposal水平和竖直都分为7份,对每一份都进行max pooling处理。这样处理后,即使大小不同的proposal,输出结果都是7x7大小,实现了fixed-length output(固定长度输出)。

[转]CNN目标检测(一):Faster RCNN详解

 

图14 proposal示意图

 

4 Classification

缩进Classification部分利用已经获得的proposal feature maps,通过full connect层与softmax计算每个proposal具体属于那个类别(如人,车,电视等),输出cls_prob概率向量;同时再次利用bounding box regression获得每个proposal的位置偏移量bbox_pred,用于回归更加精确的目标检测框。Classification部分网络结构如图15。
[转]CNN目标检测(一):Faster RCNN详解
图15 Classification部分网络结构图
 

从PoI Pooling获取到7x7=49大小的proposal feature maps后,送入后续网络,可以看到做了如下2件事:

  1. 通过全连接和softmax对proposals进行分类,这实际上已经是识别的范畴了
  2. 再次对proposals进行bounding box regression,获取更高精度的rect box
这里来看看全连接层InnerProduct layers,简单的示意图如图16,

[转]CNN目标检测(一):Faster RCNN详解

图16 全连接层示意图

其计算公式如下:

[转]CNN目标检测(一):Faster RCNN详解

其中W和bias B都是预先训练好的,即大小是固定的,当然输入X和输出Y也就是固定大小。所以,这也就印证了之前Roi Pooling的必要性。到这里,我想其他内容已经很容易理解,不在赘述了。

 

5 Faster RCNN训练

缩进Faster CNN的训练,是在已经训练好的model(如VGG_CNN_M_1024,VGG,ZF)的基础上继续进行训练。实际中训练过程分为6个步骤:
  1. 在已经训练好的model上,训练RPN网络,对应stage1_rpn_train.pt
  2. 利用步骤1中训练好的RPN网络,收集proposals,对应rpn_test.pt
  3. 第一次训练Fast RCNN网络,对应stage1_fast_rcnn_train.pt
  4. 第二训练RPN网络,对应stage2_rpn_train.pt
  5. 再次利用步骤4中训练好的RPN网络,收集proposals,对应rpn_test.pt
  6. 第二次训练Fast RCNN网络,对应stage2_fast_rcnn_train.pt

可以看到训练过程类似于一种“迭代”的过程,不过只循环了2次。至于只循环了2次的原因是应为作者提到:"A similar alternating training can be run for more iterations, but we have observed negligible improvements",即循环更多次没有提升了。接下来本章以上述6个步骤讲解训练过程。

5.1 训练RPN网络

缩进在该步骤中,首先读取RBG提供的预训练好的model(本文使用VGG),开始迭代训练。来看看stage1_rpn_train.pt网络结构,如图17。

[转]CNN目标检测(一):Faster RCNN详解

图17 stage1_rpn_train.pt

(考虑图片大小,Conv Layers中所有的层都画在一起了,如红圈所示,后续图都如此处理)

与检测网络类似的是,依然使用Conv Layers提取feature maps。整个网络使用的Loss如下:

[转]CNN目标检测(一):Faster RCNN详解

上述公式中,i表示anchors index,pi表示foreground softmax predict概率,pi*代表对应的GT predict概率(即当第i个anchor与GT间IoU>0.7,认为是该anchor是foreground,pi*=1;反之IoU<0.3时,认为是该anchor是background,pi*=0;至于那些0.3<IoU<0.7的anchor则不参与训练);t代表predict bounding box,t*代表对应foreground anchor对应的GT box。可以看到,整个Loss分为2部分:

  1. cls loss,即rpn_cls_loss层计算的softmax loss,用于分类anchors为forground与background的网络训练
  2. reg loss,即rpn_loss_bbox层计算的soomth L1 loss,用于bounding box regression网络训练。注意在该loss中乘了pi*,相当于只关心foreground anchors的回归(其实在回归中也完全没必要去关心background)。

缩进由于在实际过程中,Ncls和Nreg差距过大,用参数λ平衡二者(如Ncls=256,Nreg=2400时设置λ=10),使总的网络Loss计算过程中能够均匀考虑2种Loss。这里比较重要是Lreg使用的soomth L1 loss,计算公式如下:

[转]CNN目标检测(一):Faster RCNN详解

[转]CNN目标检测(一):Faster RCNN详解

缩进了解数学原理后,反过来看图17:

  1. 在RPN训练阶段,rpn-data(python AnchorTargetLayer)层会按照和test阶段Proposal层完全一样的方式生成Anchors用于训练
  2. 对于rpn_loss_cls,输入的rpn_cls_scors_reshape和rpn_labels分别对应p与p*,Ncls参数隐含在p与p*的caffe blob的大小中
  3. 对于rpn_loss_bbox,输入的rpn_bbox_pred和rpn_bbox_targets分别对应t于t*,rpn_bbox_inside_weigths对应p*,rpn_bbox_outside_weights对应λ,Nreg同样隐含在caffe blob大小中

这样,公式与代码就完全对应了。特别需要注意的是,在训练和检测阶段生成和存储anchors的顺序完全一样,这样训练结果才能被用于检测!

5.2 通过训练好的RPN网络收集proposals

缩进在该步骤中,利用之前的RPN网络,获取proposal rois,同时获取foreground softmax probability,如图18,然后将获取的信息保存在python pickle文件中。该网络本质上和检测中的RPN网络一样,没有什么区别。

[转]CNN目标检测(一):Faster RCNN详解
图18 rpn_test.pt

5.3 训练Fast RCNN网络

缩进读取之前保存的pickle文件,获取proposals与foreground probability。从data层输入网络。然后:

  1. 将提取的proposals作为rois传入网络,如图19蓝框
  2. 将foreground probability作为bbox_inside_weights传入网络,如图19绿框
  3. 通过caffe blob大小对比,计算出bbox_outside_weights(即λ),如图19绿框

这样就可以训练最后的识别softmax与最终的bounding regression了,如图19。

[转]CNN目标检测(一):Faster RCNN详解

图19 stage1_fast_rcnn_train.pt

之后的训练都是大同小异,不再赘述了。

 

PS:我知道你们想问,画图工具:http://ethereon.github.io/netscope/#/editor

 

--------------------------------------------------------------------------

Faster RCNN的分析就结束了,之后会缓慢更新YOLO,YOLO V2,SSD,Mask RCNN等内容,敬请期待~