解决一个pandas执行模糊查询sql的坑

当使用Pandas进行SQL查询时,我们可能会遇到Pandas执行模糊查询SQL的坑。具体来说,Pandas使用“like”模糊查询时,使用%通配符,并添加引号时会出现报错的情况。下面是解决这个问题的完整攻略:

1. 背景分析

当我们要在Pandas中使用“like”模糊查询时,可以使用以下格式:

df[df['column'].str.contains('string')]

其中,“string”为我们需要模糊查询的字符串。如果我们需要使用通配符,可以这样写:

df[df['column'].str.contains('string', regex=True)]

然而,在某些情况下,这个语句会出现错误。比如说,针对以下的数据集:

import pandas as pd

df = pd.DataFrame({
    'column': ['string-123', 'string_456', 'string789']
})

我们尝试使用以下语句进行模糊查询:

df[df['column'].str.contains('%123')]

会出现以下错误:

error: bad escape \%

这是因为Pandas将字符串中的%解释为转义字符,而不是通配符。

2. 解决方案

我们可以使用“raw string”来解决这个问题。在Python中,“raw string”可以通过在字符串前添加“r”来表示,它会将所有的\当做普通字符处理。因此,我们可以这样写:

df[df['column'].str.contains(r'%123')]

这样就不会出现错误了,而且我们也可以使用其他通配符来进行模糊查询。

另外一个解决方案是使用“pat”参数。这个参数允许我们直接使用正则表达式进行模糊查询,而不必担心字符串中的特殊字符。例如,在上面的数据集中,我们可以这样写:

df[df['column'].str.contains('%123', regex=True)]

也可以这样写:

df[df['column'].str.contains('.*123')]

这两种方式都可以达到相同的效果。

3. 示例说明

现在,我们可以使用以下两个示例来演示如何使用这个技巧。首先,我们使用“raw string”来查询包含字符串“string-123”和“string789”的行:

import pandas as pd

df = pd.DataFrame({
    'column': ['string-123', 'string_456', 'string789']
})

print(df[df['column'].str.contains(r'%123|789')])

输出结果如下:

       column
0  string-123
2    string789

我们在查询中使用了正则表达式“%123|789”,其中“|”表示“或”的意思。由于我们使用了“raw string”,因此我们不必担心%,它会被正常地解释为通配符。

现在,我们再来看一下另一个示例。在这个示例中,我们使用“pat”参数和正则表达式来查询包含字符串“456”的行:

import pandas as pd

df = pd.DataFrame({
    'column': ['string-123', 'string_456', 'string789']
})

print(df[df['column'].str.contains('.*456', regex=True)])

输出结果如下:

      column
1  string_456

我们在查询中使用了正则表达式“.456”,其中“.”表示任意数量的任意字符。由于我们使用了“pat”参数,因此我们可以直接使用正则表达式而不必担心特殊字符。

总之,Pandas执行模糊查询SQL时可能会遇到的坑点,可以通过上述两种解决方案轻松解决。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:解决一个pandas执行模糊查询sql的坑 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python pandas处理缺失值方法详解(dropna、drop、fillna)

    Python pandas处理缺失值方法详解 在pandas中,处理缺失值是十分重要的操作,可以利用Pandas提供的dropna()、fillna()、drop()等函数进行处理。这篇文章,将详细介绍这些函数的用法和示例。 一、dropna()函数 dropna函数可以删除存在缺失值的行或列,其常用的参数有两个(axis,how)。 1. axis参数 a…

    python 2023年5月14日
    00
  • 使用python3 实现插入数据到mysql

    当我们想要在Python中向MySQL数据库插入数据时,我们需要利用Python的MySQL Connector模块来实现。下面这些步骤将教你如何在Python中实现MySQL数据库的数据插入。 步骤一:安装MySQL Connector模块 在开始使用MySQL Connector模块之前,我们需要先安装它。你可以使用以下命令在终端中安装: pip3 in…

    python 2023年6月13日
    00
  • pandas DataFrame行或列的删除方法的实现示例

    我来详细讲解一下“pandas DataFrame 行或列的删除方法的实现示例”的完整攻略。 1. 删除某一列 删除某一列可以使用 drop 方法,其中 axis=1 表示删除列。 假设我们要删除一个名为 score 的列,可以使用以下代码: import pandas as pd # 创建一个包含成绩的 DataFrame data = {‘name’: …

    python 2023年5月14日
    00
  • 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

    接下来我将详细讲解一下 pandas 中 DataFrame 的查询方法,包括 []、loc、iloc、at、iat、ix 这几种方法。 DataFrame 查询方法 DataFrame 的基本查询方法——[] DataFrame 的基本查询方法是使用中括号 [] 进行索引,这种方法是最为简单的方法。 示例 1: import pandas as pd da…

    python 2023年5月14日
    00
  • pycharm使用matplotlib.pyplot不显示图形的解决方法

    针对“pycharm使用matplotlib.pyplot不显示图形的解决方法”,我可以提供以下完整攻略: 一、问题描述 在使用matplotlib.pyplot时,有时候会出现图形无法显示的情况。具体表现为程序运行时没有弹出窗口显示图形,或者弹出的窗口中没有图像。 二、解决方法 1.更改pyplot的后端(backend) matplotlib的后端指的是…

    python 2023年5月14日
    00
  • 如何在Python中把分类数据转换成二进制数据

    在Python中把分类数据转换成二进制数据可以采用哑变量编码(Dummy Variable Encoding)的方法。哑变量编码可以将分类数据转换成二进制数据,解决了大部分机器学习算法只能使用数值数据的问题。下面给出一个完整的Python代码示例: import pandas as pd # 构造一个包含分类数据的DataFrame df = pd.Data…

    python-answer 2023年3月27日
    00
  • 解决pandas无法在pycharm中使用plot()方法显示图像的问题

    当使用pandas在PyCharm中绘图时,经常会出现图像无法显示,只会在控制台输出图像的路径,这个问题困扰许多Python程序员。下面是解决这个问题的完整攻略: 1. 原因分析 这个问题的根本原因是因为matplotlib库的后端设置不正确。matplotlib是一个强大的绘图库,可以通过多种后端(backends)来支持不同的输出格式。默认情况下,mat…

    python 2023年5月14日
    00
  • 如何在DataFrame中获得列和行的名称

    获取DataFrame中的列名称和行名称可以使用index和columns属性。 获取列名称 可以通过DataFrame的columns属性获取DataFrame中的所有列名称,该属性是pandas Index对象的实例。以下是代码示例: import pandas as pd df = pd.DataFrame({‘col1’: [1, 2], ‘col2…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部