Opencv二值化

OpenCV二值化

OpenCV二值化是一种将灰度图像转换为二值图像的方法。二值图像只包含黑色和白色两种颜色,可以用于图像处理中的多应用,如边缘检测、形态学操作等。本文将介绍OpenCV二值化的基本概念和使用方法,并提供两个示例说明。

OpenCV二值化的基本概念

OpenCV二值化是一种将灰度图像转换为二值图像方法。二值图像只包含黑色和白色两种颜色,可以用于图像处理中的很多应用,如边缘检测、形态学操作等。二值化的基本思想是将灰度图像中的像素值转换为0或255,其中0表示黑色,255表示白色。二值化的阈值可以手动设置,也可以自动计算。自动计算阈值的方法包括大津法、自适应阈值等。

OpenCV二值化的使用方法

OpenCV库提供了cv::threshold函数,可以用于图像二值化。该函数的基本语法如下:

cv::threshold(src, dst, thresh, maxval, type)

其中,src表示输入图像,dst表示输出图像,thresh表示阈,maxval表示最大值,type表示二值化类型。常用的二值化类型包括:

  • cv::THRESH_BINARY:大于阈值的像素值设为最大值,小于等阈值的像素值设为0。
  • cv::THRESH_BINARY_INV:大于值的像素值设为0,小于等阈值的像素值设为最大值。
  • cv::THRESH_TRUNC:大于阈值的像值设为阈值,小于等阈的像素值不变。
  • cv::THRESH_TOZERO:大于阈值的像素值不变,小于等于阈值的像素值设为0。
  • cv::THRESH_TOZERO_INV:大阈值的像素值为0,小于等于阈值的像素值不变。

大津法是一种自适应阈值分割算法,自动计算二值化阈值。可以通过设置type参数为cv::THRESH_OTSU来实现大津法,例如:

cv::threshold(src, dst, 0, 255, cv::THRESH_BINARY + cv::THRESH_OTSU)

上述代码将输入图像转换为值图像其中阈值为0,最值为255,二值化类型为大津法。

示例

下面是两个OpenCV二值化的示例说明:

示例1:手动设置阈值进行二值化

import cv2

# 读取灰度图像
img = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)

# 将灰度图像转换为二值图像
ret, binary = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 显示二值图像
cv2.imshow('Binary Image', binary_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码后,系统会显示二值图像。

示例2:使用大津法进行二值化

import cv2

# 读取灰度图像
img = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)

# 将灰度图像转换为二值图像
ret, binary_img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 显示二值图像
cv2.imshow('Binary Image', binary_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码后,系统会显示二值图像。

结论

OpenCV二值化是一种将灰度图像转换为二值图像的方法,可以手动阈值,也可以自动计算阈值。通过CV库中的cv::threshold函数,可以实现图像的二值化。通过本文介绍,您该已经解了OpenCV二化的基本概念和使用方法,可以根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv二值化 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 简单图像识别第二步

    OpenCV 中的简单图像识别是一种图像处理技术,它可以通过对图像进行特征提取和匹配来实现对图像的识别。在 OpenCV 中,可以使用 SIFT、F、ORB 等算法来进行特征提取和匹配。 使用 SIFT 算法进行简单图像识别的基本步骤如下: 读取图像 转换颜色空间 计算 SIFT 特征 训练分类器 预测分类结果 以下是两个示例说明: 示例一:使用 SIFT …

    python 2023年5月11日
    00
  • Opencv 差分滤波器

    OpenCV 差分滤波器 OpenCV 差分滤波器是一种非线性滤波器,可以用于图像边缘检测和轮廓提取等应用。差分滤波器的基本思想是对像中每个素点取其邻域内像素的差值作该像素点的值。本文将介绍OpenCV 差分滤波器的基本原理使用方法,并提供两个示例。 OpenCV 差分滤波器的基本原理 OpenCV 差分滤波器是一种非线性波器,可以用于图像边缘检测和轮廓提取…

    python 2023年5月10日
    00
  • Opencv灰度化

    OpenCV大津二值化算法 OpenCV大津二值化算法是一种自适应的二值化方法,可以根据图像的灰度分布自动确定二值化的阈值,从而将图像转换为黑白二值图像。本文将介绍大津二值化算法的基本原理和使用方法,并提供两个示例说明。 大津二值化算法的基本原理 大津二值化算法的基本原理是寻找一个阈值,使得将图像分为两个部分后,两个部分的类内方差之和最小,类间方差之和最大。…

    python 2023年5月10日
    00
  • Opencv 使用归一化交叉相关进行模式匹配

    OpenCV 中的模板匹配是一种图像处理技术,它可以在图像中查找与给定模板最匹配的区域。在 OpenCV 中,通常会使用 cv2.matchTemplate() 函数来实现模板匹配,其中归一化交叉相关是一种常用的匹配方法。 使用 cv2.matchTemplate() 函数的基本语法如下: res = cv2.matchTemplate(image, tem…

    python 2023年5月11日
    00
  • Opencv 傅立叶变换低通滤波

    Opencv 傅立叶变换低通滤波的完整攻略 Opencv 傅立叶变换低通滤波是一种常见的图像处理技术,可以用于图像的去噪、平滑等操作。本文将详细讲解Opencv 傅立叶变换低通滤波的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 傅立叶变换低通滤波的基本原理 Opencv 傅立叶变换低通滤波是一种基于傅立叶变换的图像处理技术,可以通过对图像进行频…

    python 2023年5月10日
    00
  • Opencv 使用Gabor滤波器进行特征提取

    OpenCV 中的 Gabor 滤波器是一种图像处理技术,它可以通过对图像进行 Gabor 滤波来提取图像的纹理特征。在 OpenCV 中,可以使用 cv2.getGaborKernel() 函数来生成 Gabor 滤波器,使用 cv2.filter2D() 函数来对图像进行滤波。 使用 cv2.getGaborKernel() 函数的基本语法如下: ker…

    python 2023年5月11日
    00
  • Opencv 滑动窗口+HOG

    以下是关于Opencv滑动窗口+HOG的完整攻略。 Opencv滑动窗口+HOG基本原理 Opencv滑动窗口+HOG是一种目标检测方法,它通过在图像上滑动一个固定大小的窗口,将窗口内的图像块提取HOG特征,然后将特征输入到分类器中进行分类,从而实现目标检测。Opencv滑动窗口+HOG的基本原理是将图像分割成多个小块,然后将每个小块提取HOG特征,最后将特…

    python 2023年5月11日
    00
  • Opencv Canny边缘检测 边缘细化

    Opencv Canny边缘检测边缘细化的完整攻略 Opencv Canny边缘检测边缘细化是一种常用的图像处理技术,可以用于图像的边缘检测和边缘细化。本文将详细讲解Opencv Canny边缘检测边缘细化的完整攻略,包括基本原理、方法和两个示例。 Opencv Canny边缘检测边缘细化的基本原理 Opencv Canny边缘检测边缘细化是一种基于梯度计算…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部