tensoflow笔记
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Input, Dense, Activation, Model #方法一: layers = [Dense(32, input_shape = (784,)), Activation('relu'), Dense(10), Activation('softmax')] model = Sequential(layers) #方法二: model = Sequential() model.add(Dense(32, input_shape = (784,))) model.add(Activation('relu')) model.add(Dense(10)) model.add(Activation('softmax')) #方法三: # 定义输入层,确定输入维度 input = Input(shape = (784, )) # 2个隐含层,每个都有64个神经元,使用relu激活函数,且由上一层作为参数 x = Dense(64, activation='relu')(input) x = Dense(64, activation='relu')(x) # 输出层 y = Dense(10, activation='softmax')(x) # 定义模型,指定输入输出 model = Model(input=input, output=y) # 编译模型,指定优化器,损失函数,度量 model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 模型拟合,即训练 model.fit(data, labels)
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow笔记 - Python技术站