python用pandas数据加载、存储与文件格式的实例

下面是 Python 使用 Pandas 进行数据加载、存储与文件格式的实例攻略。

加载数据

Pandas 提供了许多函数来加载数据,主要有以下几个函数:

  • read_csv():从 CSV 文件加载数据
  • read_excel():从 Excel 文件加载数据
  • read_sql():从 SQL 数据库加载数据
  • read_json():从 JSON 文件加载数据
  • read_html():从 HTML 文件加载数据

下面以读取 CSV 文件为例:

import pandas as pd

# 读取数据
df = pd.read_csv('data.csv')

其中,pd.read_csv() 函数用于读取 CSV 文件并返回一个数据框对象,文件名需要写在括号中。

存储数据

Pandas 提供了多种函数来将数据保存到不同的文件格式中,主要有以下几个函数:

  • to_csv():将数据保存到 CSV 文件中
  • to_excel():将数据保存到 Excel 文件中
  • to_sql():将数据保存到 SQL 数据库中
  • to_json():将数据保存到 JSON 文件中
  • to_html():将数据保存到 HTML 文件中

下面以存储数据到 CSV 文件为例:

# 存储数据到 CSV 文件中
df.to_csv('output.csv', index=False)

其中,df.to_csv() 函数用于将数据保存到 CSV 文件中,文件名需要写在括号中。参数 index=False 表示不保存索引列。

文件格式转换

Pandas 还提供了一些函数来进行数据格式的转换,主要有以下几个函数:

  • DataFrame.to_*():将数据框对象转换为不同的文件格式
  • read_*():从不同格式的文件中加载数据

下面以将 CSV 文件转换为 Excel 文件为例:

# 读取 CSV 文件
df = pd.read_csv('data.csv')

# 将数据保存到 Excel 文件中
df.to_excel('output.xlsx', index=False)

其中,pd.read_csv() 函数用于读取 CSV 文件,df.to_excel() 函数用于将数据保存到 Excel 文件中,文件名需要写在括号中。

另外,除了 CSV 和 Excel,Pandas 还支持多种文件格式,可以根据实际需要选择不同的格式进行数据的加载、存储与转换。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python用pandas数据加载、存储与文件格式的实例 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Pandas GroupBy

    Pandas GroupBy是Pandas数据分析库中一个十分常用的功能,它常常和其他一些数据处理函数(比如agg、apply等)一同使用,在数据处理中起到了至关重要的作用。 什么是Pandas GroupBy Pandas GroupBy是一种基于某个键对数据集进行切片、划分和分解的方法。数据集根据一个或多个键(可以是函数、数组、DataFrame列名等)…

    python-answer 2023年3月27日
    00
  • 如何在Pandas中把数据时间转换为日期

    在Pandas中将日期字符串转换为日期的方法包括两个步骤: 用 to_datetime 函数将日期字符串转换为 Pandas 的 Timestamp 类型。 使用 dt 或 apply 函数将 Timestamp 类型转换为日期。 下面是具体的实现步骤: 导入 Pandas 模块 import pandas as pd 创建包含日期字符串的数据 dates …

    python-answer 2023年3月27日
    00
  • Pandas 常用函数

    那么下面我来详细讲解Pandas常用函数的完整攻略,包含一些实例说明。 一、Pandas概述 Pandas是一个基于NumPy的Python数据分析库,可用于大量数据处理任务,例如合并、切片、筛选、聚合等数据处理。它具有以下优点: 提供了灵活的数据结构DataFrame和Series,方便数据操作; 可以高效地处理大型数据集; 可以自动对齐数据; 可以快速处…

    python-answer 2023年3月27日
    00
  • 在Pandas-Python中获取该列的子串

    获取 DataFrame 中某一列的子串,在 Pandas 中可以通过 .str 属性来完成。这个属性能够对字符串类型的列进行向量化操作,例如 split、contains、replace 等。下面我们来详细说明如何在 Pandas-Python 中获取某一列的子串。 以以下示例数据集为例: import pandas as pd import numpy …

    python-answer 2023年3月27日
    00
  • Pandas库的下载和安装

    Python 官方标准发行版并没有自带 Pandas 库,因此需要另行安装。下面介绍在不同操作系统环境下,标准发行版安装 Pandas 的方法。 Windows系统安装 使用 pip 包管理器安装 Pandas,是最简单的一种安装方式。在 CMD 命令提示符界面行执行以下命令:pip install pandas Linux系统安装 对于不同的版本的 Lin…

    Pandas 2023年3月4日
    00
  • Python Matplotlib数据可视化模块使用详解

    Python Matplotlib数据可视化模块使用详解 简介 Matplotlib 是一个用于创建静态,动态和交互式可视化的流行的 Python 数据可视化库。它可以绘制二维和三维图,条形图,饼图,直方图等。 安装 要使用 Matplotlib 库,你需要先安装它。可以使用以下命令在命令行中安装 Matplotlib: pip install matplo…

    python 2023年5月14日
    00
  • 对Pandas数据框架的行进行排序

    对Pandas数据框架的行进行排序,可以使用sort_values()方法。sort_values()方法可以根据一个或多个列进行升序或降序排列。 下面是对Pandas数据框架的行进行排序的完整攻略: 1. 导入必要的库 import pandas as pd 2. 创建示例数据框架 为了演示如何对Pandas数据框架的行进行排序,我们需要创建一个数据框架作…

    python-answer 2023年3月27日
    00
  • 按列值分割Pandas数据框架

    按列值分割Pandas数据框架是数据分析中非常常用的操作,它可以将一个数据框架按照指定的列进行分割,并以此生成多个子数据框架。在这里,我将提供一个完整攻略,帮助您了解如何按列值分割Pandas数据框架。 1.导入必要的库 要按列值分割Pandas数据框架,首先需要导入必要的库,例如Pandas库和NumPy库。在Python中,可以使用以下代码导入: imp…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部