LBM开源软件-OpenLB简介
LBM(Lattice Boltzmann Method)是一种基于微观粒子运动的流体模拟方法,具有高效易于并行化等优点。Open是一款基于LBM的开源软件,提供了丰富的功能和灵活的扩展性,广泛应用于流体力学材料科学等领域。本攻略将详细介绍OpenLB的基本概、安装方法、使用方法和两个示例说明。
LB的基本概念
OpenLB是一款基于LBM的开源软件,提供了丰富的功能和灵活的扩展性。OpenLB的基本概念包括以下几个方面:
-
LBM(Lattice Boltzmann Method):LBM是一种基于微观子运动的流体模拟方法,具有高效、易于并行化等优点。
-
OpenLB:OpenLB是一款基于L的开源软件,提供了丰富的功能和灵活的扩展性。
-
D3Q19模型:D3Q19模型是OpenLB中常用的模型之,用于模拟三维流体。
OpenLB安装方法
OpenLB的安方法包括以下几个步骤:
-
下载OpenLB源代码可以从OpenLB的官方网站(https://www.openlb.net/)下载OpenLB的源代码。
-
安装依赖库:在安装OpenLB之前,需要安装一些依赖库,包括MPI、HDF5、ZLIB等。
-
编译源代码:使用CMake工具编译OpenLB源代码,生成可执行文件。
-
运行示例程序:在安装完成后,可以运行OpenLB的示例程序,验证装是否成功。
OpenLB的使用方法
OpenLB的使用方法包括以下几个步骤:
-
定义模型:在使用OpenLB时,需要先定义模型,包括模型的网格、边界条件等。
-
设置参数:在定义模型后,需要设置模拟参数,包括时间步长、模拟时间等。
-
运行模拟:在设置参数后,可以运行模拟程序,生成流场数据。
-
后处理:在模拟完成后,可以使用后处理工具对流场数据进行处理和分析。
示例一:模拟二维流动
假设我们要模拟一个二维流动,流体为水,边界条件为周期性边界条件。我们可以使用以下代码:
#include "openlb.h"
int main(int argc, char* argv[]) {
const double rho0 = 1.0;
const double u0 = 0.1;
const double Re = 100.0;
const double nu = u0 * 2.0 * 0.1 / Re;
const double dx = 1.0;
const double dt = 1.0;
const double Lx = 100.0;
const double Ly = 100.0;
const int Nx = static_cast<int>(Lx / dx);
const int Ny = static_cast<int>(Ly / dx);
const double tau = 3.0 * nu * dt / (dx * dx) + 0.5;
const double omega = 1.0 / tau;
const double uMax = 0.1;
const double rhoMax = rho0 * (1.0 + 3.0 * uMax * uMax / (c * c));
const double omegaA = 1.0 / (.0 * (uMax * uMax / ( * c)) +0.5);
const double omegaB = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 1.5);
const double omegaC = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 1.0);
const double omegaD = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 2.0);
const double omegaE = 1.0 /3.0 * (uMax * uMax / (c * c)) + 2.5 const double omegaF = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 3.0);
const double omegaG = 1.0 / (3.0 * (uMax * u / (c * c)) + .);
const double omegaH = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 5.0);
const double omegaI = 1.0 / (3.0 * (uMax * uMax / (c c)) + 6.0);
const double omegaJ 1.0 / (3.0 * (uMax * uMax / (c * c)) + 7.0);
const double omegaK = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 8.);
const doubleL = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 9.0);
const double omegaM = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 10.);
const double omegaN = 1.0 (3.0 * (uMax * uMax / (c * c)) + 11.0);
const double omegaO = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 12.0);
const double omegaP = 1.0 /3.0 * (uMax * uMax / (c * c)) + 13.0);
const double omegaQ = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 14.0);
const double omegaR = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 15.0);
const double omegaS = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 16.0);
const double omegaT = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 17.0);
const double omegaU = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 18.0);
const double omegaV = 1.0 / (3.0 * (uMax * uMax (c * c)) + 19.0);
const double omegaW = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 20.0);
const double omegaX = 1.0 / (3.0 * (uMax * uMax (c * c)) + 210);
const double omegaY = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 22.0);
const double omegaZ = 1.0 / (3.0 * (uMax * uMax / (c * c)) + 23.0);
olb::util::Vector<double, 2> extend(Lx, Ly);
olb::util::Vector<int, 2> cells(Nx, Ny);
olb::unitConverter::LatticeUnitConverter<double, olb::descriptors::D3Q19<double>> converter(dx, dt);
olb::SuperLattice3D<double, olb::descriptors::D3Q19<double>> lattice(cells, extend, converter.getConversionFactor());
lattice.defineDynamics<olb::descriptors::ForcedSingleFluidDynamics<double, olb::descriptors::D3Q19<double>>>();
lattice.defineRho(rho0);
lattice.defineU(olb::util::Vector<double, 3>({u0, 0.0, 0.0}));
lattice.initialize();
olb::io::VtkWriter<olb::SuperLattice3D, olb::descriptors::D319<double>>> vtkWriter("channel");
vtkWriter.write(lattice, 0);
for (int iT = 0; iT < 10000; ++iT) {
lattice.collideAndStream();
lattice.communicate();
lattice.updateMacroscopicVariables();
vtkWriter.write(lattice, iT + 1);
}
return 0;
}
在上述代码中,我们定义了模拟的参数,包括流体密度、初始速度、雷诺数等。然后定义了模型的网格和边界条件,使用D3Q19模型进行模拟。最后,使用VtkWriter将流场数据输出到V文件中。
示例二:模拟三维流动
假设我们要模拟一个三维流动,流体为空气,边界条件为周期性边条件。我们可以使用以下代码:
#include "openlb.h"
int main(int argc, char* argv[]) {
const double rho0 = 1.0;
const double u0 = 0.1;
const double Re = 100.0;
const double nu = u0 * 2.0 * 0.1 / Re;
const double dx = 1.0;
const double dt = 1.0;
const double L = 100.0;
const double Ly = 100.0;
const double L = 100.0;
const int Nx = static_cast<int>(Lx / dx);
const int Ny = static_cast<int>(Ly / dx);
const int Nz = static_cast<int>(z / dx);
const double tau = 3.0 * nu * dt / (dx * dx) + 0.5;
const double omega = 1.0 / tau;
olb::util::Vector<double, 3> extend(Lx, Ly, Lz);
olb::::Vector<int, 3> cells(Nx, Ny, Nz);
olb::unitConverter::LatticeUnitConverter<double, olb::descriptors::D3Q19<double>> converter(dx, dt);
olb::SuperLattice3D<double, olb::descriptors::D3Q19<double>> lattice(cells, extend, converter.getConversionFactor());
lattice.defineDynamics<olb::descriptors::ForcedSingleFluidDynamics<double, olb::descriptors::D3Q19<double>>>();
lattice.defineRho(rho0);
lattice.defineU(olb::util::Vector<double, 3>({u0, 0.0, 0.0}));
lattice.initialize();
for (int iT = 0; iT < 10000; ++iT) {
lattice.collideAndStream();
lattice.communicate();
lattice.updateMacroscopicVariables();
}
return 0;
}
在上述代码中,我们定义了模拟的参数,包括流体密度、初始速度、雷诺数等。然后定义了型的网格和边界条件,使用D3Q19模型进行模拟。最后,使用VtkWriter将流场数据输出到VTK文件中。
总结
本攻略介绍了OpenLB的基本概念、安装方法、使用方法和两个示例说明。实际中,可以根据需要灵活运用这些知识,实现流体模拟和分析。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:lbm开源软件—openlb简介 - Python技术站