上一讲博客主要对RNN的理论做了介绍,如果想看详细的RNN推导过程以及一些变种,如:LSTM、GRU等,可以给博主留言。下面基于mnist数据集,采用RNN建模和仿真,发现RNN对于时序模型的强大建模能力,迭代20次就已经达到96准确率。下面直接上代码,有不懂的问题,可以留言。
#-*- coding:utf-8 -*- #author : zhangwei import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST.data/' , one_hot=True) n_inputs = 28 max_time = 28 lstm_size = 100 n_classes = 10 batch_size = 50 n_batch = mnist.train.num_examples // batch_size with tf.Graph().as_default(): with tf.name_scope('Input'): x = tf.placeholder(tf.float32 , [None , 784] , name='input_x') y = tf.placeholder(tf.float32 , [None , 10] , name='input_y') weights = tf.Variable(tf.truncated_normal([lstm_size , n_classes] , stddev=0.1) , name='weights') biases = tf.Variable(tf.constant(0.1 , shape=[n_classes]) , name='biases') def RNN(x , weights , biases): inputs = tf.reshape(x , [-1 , max_time , n_inputs]) lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(lstm_size) outputs , final_states = tf.nn.dynamic_rnn(lstm_cell , inputs , dtype=tf.float32) results = tf.nn.softmax(tf.matmul(final_states[1] , weights) + biases) return results prediction = RNN(x , weights , biases) with tf.name_scope('Loss'): with tf.name_scope('cross_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y , logits = prediction) , name='cross_entropy') with tf.name_scope('train'): train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) with tf.name_scope('Acc'): correct_prediction = tf.equal(tf.argmax(y , 1) , tf.argmax(prediction , 1) , name='correct_prediction') accuracy = tf.reduce_mean(tf.cast(correct_prediction , tf.float32) , name='accuracy') init = tf.global_variables_initializer() # saver = tf.train.Saver() writer = tf.summary.FileWriter(logdir='/home/zhangwei/tensorboard' , graph=tf.get_default_graph()) writer.close() with tf.Session() as sess: sess.run(init) for epoch in range(200): for batch in range(n_batch): batch_xs , batch_ys = mnist.train.next_batch(batch_size) training , loss = sess.run([train_step , cross_entropy] , feed_dict={x : batch_xs , y : batch_ys}) acc = sess.run(accuracy , feed_dict={x : mnist.test.images , y : mnist.test.labels}) print "Iter" + str(epoch) + " , Testing Accuracy" + str(acc) + ', loss:'+str(loss) # saver.restore(sess , '/home/zhangwei/my_net_1/second') # print sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
下面是识别结果以及在tensorboard上进行可视化结果:
tensorboard可视化:
继续搬砖!
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:循环神经网络学习研究(二)-代码 - Python技术站