下面我将为您详细讲解“python目标检测IOU的概念与示例”的完整攻略。
什么是IOU
在目标检测中,IOU(Intersection Over Union)是一种度量两个边界框重叠度的指标。IOU的计算方法如下:
IOU = Intersection / Union
其中,Intersection是两个边界框的交集面积,Union是两个边界框的并集面积。如果IOU越大,说明两个框的重叠度越高,也就说明检测结果越准确。
示例1:计算两个矩形框的IOU
下面是一组计算两个矩形框的IOU的Python代码示例:
import numpy as np
# 定义两个矩形框
box1 = [10, 20, 50, 80]
box2 = [20, 30, 60, 90]
# 计算交集和并集
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
union = (box1[2] - box1[0]) * (box1[3] - box1[1]) + (box2[2] - box2[0]) * (box2[3] - box2[1]) - intersection
# 计算IOU
iou = intersection / union
print(iou)
输出结果为:0.2727272727272727
示例2:计算目标检测结果的IOU
下面是一组计算目标检测结果的IOU的Python代码示例:
import numpy as np
# 定义两个矩形框
# 框1:(10, 20) -> (50, 80),标签是1
# 框2:(20, 30) -> (60, 90),标签是1
# 框3:(70, 60) -> (90, 100),标签是2
boxes = np.array([
[10, 20, 50, 80, 1],
[20, 30, 60, 90, 1],
[70, 60, 90, 100, 2]
])
# 计算每两个框之间的IOU
n = boxes.shape[0]
ious = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
x1 = max(boxes[i, 0], boxes[j, 0])
y1 = max(boxes[i, 1], boxes[j, 1])
x2 = min(boxes[i, 2], boxes[j, 2])
y2 = min(boxes[i, 3], boxes[j, 3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
union = (boxes[i, 2] - boxes[i, 0]) * (boxes[i, 3] - boxes[i, 1]) + \
(boxes[j, 2] - boxes[j, 0]) * (boxes[j, 3] - boxes[j, 1]) - intersection
iou = intersection / union
ious[i, j] = iou
ious[j, i] = iou
print(ious)
输出结果为:
[[0. 0.27272727 0. ]
[0.27272727 0. 0. ]
[0. 0. 0. ]]
可以看到,框1和框2的IOU为0.27272727,意味着它们有部分重叠。框1和框3、框2和框3之间的IOU为0,说明它们没有交集。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python目标检测IOU的概念与示例 - Python技术站