keras输出预测值和真实值方式

下面是关于“Keras 输出预测值和真实值方式”的完整攻略。

Keras 输出预测值和真实值方式

在Keras中,我们可以使用predict()方法输出模型的预测值。我们也可以使用evaluate()方法输出模型的损失值和指标值。下面是两个示例说明。

示例1:使用predict()方法输出预测值

from keras.models import Sequential
from keras.layers import Dense
import numpy as np

# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# 加载数据
dataset = np.loadtxt("pima-indians-diabetes.csv", delimiter=",")
X = dataset[:,0:8]
Y = dataset[:,8]

# 训练模型
model.fit(X, Y, epochs=150, batch_size=10, verbose=0)

# 输出预测值
predictions = model.predict(X)
print(predictions)

在这个示例中,我们首先使用Sequential()类创建一个新的模型。我们使用Dense()函数添加层到模型中。我们使用compile()方法编译模型。我们使用loadtxt()函数加载数据。我们使用fit()方法训练模型。我们使用predict()方法输出模型的预测值。

示例2:使用evaluate()方法输出损失值和指标值

from keras.models import Sequential
from keras.layers import Dense
import numpy as np

# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# 加载数据
dataset = np.loadtxt("pima-indians-diabetes.csv", delimiter=",")
X = dataset[:,0:8]
Y = dataset[:,8]

# 训练模型
model.fit(X, Y, epochs=150, batch_size=10, verbose=0)

# 输出损失值和指标值
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

在这个示例中,我们首先使用Sequential()类创建一个新的模型。我们使用Dense()函数添加层到模型中。我们使用compile()方法编译模型。我们使用loadtxt()函数加载数据。我们使用fit()方法训练模型。我们使用evaluate()方法输出模型的损失值和指标值。

总结

在Keras中,我们可以使用predict()方法输出模型的预测值。我们可以使用evaluate()方法输出模型的损失值和指标值。我们可以使用model.metrics_names属性获取模型的指标名称。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:keras输出预测值和真实值方式 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • keras在win7下环境搭建

    windows环境下安装keras无GPU加速 无gpu安装过程:一、卸载之前版本。   把之前单独安装的Python等统统卸载掉。学python的时候直接安装了python2.7,先把他卸载掉,因为Anaconda里边包含了python。二、安装Anaconda。   这个超级简单,安装目录我用的是的 D:\Anaconda2 。这个特别要注意:安装路径千…

    2023年4月8日
    00
  • Keras: input_shape函数

    keras.backend.int_shape(x) 返回张量或变量的尺寸,作为 int 或 None 项的元组。 参数 x: 张量或变量。 返回 整数元组(或 None 项)。 例子 >>> from keras import backend as K >>> inputs = K.placeholder(shape=(…

    Keras 2023年4月5日
    00
  • 拓端tecdat|TensorFlow 2.0 keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)

    原文链接:http://tecdat.cn/?p=15850 在本部分中,您将发现如何使用标准深度学习模型(包括多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN))开发,评估和做出预测。 开发多层感知器模型 多层感知器模型(简称MLP)是标准的全连接神经网络模型。 它由节点层组成,其中每个节点连接到上一层的所有输出,每个节点的输出连接到下一…

    2023年4月8日
    00
  • 【491】安装 keras_contrib 高级网络实现模块详细方法

    参考:How to install keras-contrib   keras_contrib是keras的一个高级网络实现模块,里面包含了用keras实现的CRF等高级网络层和相关算法。具体安装方法如下: 安装 git安装地址:https://git-scm.com/download/win全部默认即可 在 cmd 中输入pip install git+h…

    Keras 2023年4月7日
    00
  • 7.keras-模型保存和载入

    keras-模型保存和载入 1.数据的载入与预处理 import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential,load_model from keras.layers impo…

    2023年4月5日
    00
  • Keras猫狗大战六:用resnet50预训练模型进行迁移学习,精度提高到95.3%

    前面用一个简单的4层卷积网络,以猫狗共25000张图片作为训练数据,经过100 epochs的训练,最终得到的准确度为90%。 深度学习中有一种重要的学习方法是迁移学习,可以在现有训练好的模型基础上针对具体的问题进行学习训练,简化学习过程。 这里以imagenet的resnet50模型进行迁移学习训练猫狗分类模型。 import os from keras …

    Keras 2023年4月7日
    00
  • 在keras 中获取张量 tensor 的维度大小实例

    下面是关于“在Keras中获取张量tensor的维度大小实例”的完整攻略。 获取张量tensor的维度大小 在Keras中,我们可以使用shape属性获取张量tensor的维度大小。下面是一个示例说明,展示如何使用shape属性获取张量tensor的维度大小。 示例1:获取张量tensor的维度大小 from keras.layers import Inpu…

    Keras 2023年5月15日
    00
  • 【火炉炼AI】深度学习008-Keras解决多分类问题

    【火炉炼AI】深度学习008-Keras解决多分类问题 (本文所使用的Python库和版本号: Python 3.6, Numpy 1.14, scikit-learn 0.19, matplotlib 2.2, Keras 2.1.6, Tensorflow 1.9.0) 在我前面的文章【火炉炼AI】深度学习005-简单几行Keras代码解决二分类问题中,…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部