Python中利用LSTM模型进行时间序列预测分析的实现

下面是关于“Python中利用LSTM模型进行时间序列预测分析的实现”的完整攻略。

Python中利用LSTM模型进行时间序列预测分析的实现

在本攻略中,我们将介绍如何使用Python中的LSTM模型进行时间序列预测分析。我们将使用两个示例来说明如何使用LSTM模型进行时间序列预测分析。以下是实现步骤:

示例1:使用LSTM预测股票价格

在这个示例中,我们将使用LSTM模型来预测股票价格。以下是实现步骤:

步骤1:准备数据集

我们将使用Yahoo Finance API来获取股票价格数据。以下是数据集准备步骤:

import yfinance as yf

msft = yf.Ticker("MSFT")
df = msft.history(period="max")

在这个示例中,我们使用yfinance库中的Ticker()函数获取Microsoft股票的历史价格,并将其存储在df变量中。

步骤2:预处理数据

我们需要对数据进行预处理,以便将其用于训练模型。以下是预处理步骤:

import numpy as np

# 将数据集分为训练集和测试集
train_size = int(len(df) * 0.8)
train_data = df[:train_size]
test_data = df[train_size:]

# 将数据集缩放到0到1之间
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)

# 将数据集转换为时间序列数据
def create_dataset(X, y, time_steps=1):
    Xs, ys = [], []
    for i in range(len(X) - time_steps):
        Xs.append(X[i:i + time_steps])
        ys.append(y[i + time_steps])
    return np.array(Xs), np.array(ys)

time_steps = 30
X_train, y_train = create_dataset(train_data, train_data[:, 3], time_steps)
X_test, y_test = create_dataset(test_data, test_data[:, 3], time_steps)

在这个示例中,我们首先使用int()函数将数据集分为训练集和测试集。然后,我们使用MinMaxScaler()函数将数据集缩放0到1之间。接下来,我们使用create_dataset()函数将数据集转换为时间序列数据,并将时间步长设置为30。

步骤3:构建模型

我们将使用LSTM模型来训练模型。以下是模型构建步骤:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM

model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

在这个示例中,我们首先使用Sequential()函数创建一个序列模型。然后,我们使用LSTM()函数添加一个LSTM层,并将其输出维度设置为50。最后,我们添加一个输出层。我们使用compile()函数编译模型,并将优化器设置为'adam',损失函数设置为'mse'。

步骤4:训练模型

我们将使用训练集来训练模型。以下是训练步骤:

history = model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test))

在这个示例中,我们使用fit()函数训练模型,并将训练集和标签作为输入,将epochs设置为10,将验证集设置为(X_test, y_test)。

步骤5:测试模型

我们将使用测试集来测试模型的准确性。以下是测试步骤:

test_loss = model.evaluate(X_test, y_test)
print('Test loss:', test_loss)

在这个示例中,我们使用evaluate()函数计算模型在测试集上的损失,并打印损失。

示例2:使用LSTM预测气温

在这个示例中,我们将使用LSTM模型来预测气温。以下是实现步骤:

步骤1:准备数据集

我们将使用NOAA的气象数据集来训练模型。以下是数据集准备步骤:

import pandas as pd

df = pd.read_csv('https://storage.googleapis.com/tf-datasets/timeseries/temperature.csv')

在这个示例中,我们使用pandas库中的read_csv()函数从Google Cloud Storage中加载气象数据集,并将其存储在df变量中。

步骤2:预处理数据

我们需要对数据进行预处理,以便将其用于训练模型。以下是预处理步骤:

import numpy as np

# 将数据集分为训练集和测试集
train_size = int(len(df) * 0.8)
train_data = df[:train_size]
test_data = df[train_size:]

# 将数据集缩放到0到1之间
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)

# 将数据集转换为时间序列数据
def create_dataset(X, y, time_steps=1):
    Xs, ys = [], []
    for i in range(len(X) - time_steps):
        Xs.append(X[i:i + time_steps])
        ys.append(y[i + time_steps])
    return np.array(Xs), np.array(ys)

time_steps = 30
X_train, y_train = create_dataset(train_data, train_data[:, 1], time_steps)
X_test, y_test = create_dataset(test_data, test_data[:, 1], time_steps)

在这个示例中,我们首先使用int()函数将数据集分为训练集和测试集。然后,我们使用MinMaxScaler()函数将数据集缩放0到1之间。接下来,我们使用create_dataset()函数将数据集转换为时间序列数据,并将时间步长设置为30。

步骤3:构建模型

我们将使用LSTM模型来训练模型。以下是模型构建步骤:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM

model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

在这个示例中,我们首先使用Sequential()函数创建一个序列模型。然后,我们使用LSTM()函数添加一个LSTM层,并将其输出维度设置为50。最后,我们添加一个输出层。我们使用compile()函数编译模型,并将优化器设置为'adam',损失函数设置为'mse'。

步骤4:训练模型

我们将使用训练集来训练模型。以下是训练步骤:

history = model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test))

在这个示例中,我们使用fit()函数训练模型,并将训练集和标签作为输入,将epochs设置为10,将验证集设置为(X_test, y_test)。

步骤5:测试模型

我们将使用测试集来测试模型的准确性。以下是测试步骤:

test_loss = model.evaluate(X_test, y_test)
print('Test loss:', test_loss)

在这个示例中,我们使用evaluate()函数计算模型在测试集上的损失,并打印损失。

总结

在本攻略中,我们使用Python中的LSTM模型实现了两个时间序列预测分析示例。我们首先准备数据集,然后对数据进行预处理,构建模型,训练模型,测试模型。在第一个示例中,我们使用LSTM预测股票价格。在第二个示例中,我们使用LSTM预测气温。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python中利用LSTM模型进行时间序列预测分析的实现 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • tensorflow 2.0 技巧 | 自定义tf.keras.Model的坑

    model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format=”tf” NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model…

    Keras 2023年4月8日
    00
  • Python分割训练集和测试集的方法示例

    下面是关于“Python分割训练集和测试集的方法示例”的完整攻略。 Python分割训练集和测试集的方法 在机器学习中,通常需要将数据集分割为训练集和测试集。训练集用于训练模型,测试集用于评估模型的性能。以下是两个示例说明如何使用Python分割训练集和测试集: 示例1:使用sklearn库分割数据集 可以使用sklearn库中的train_test_spl…

    Keras 2023年5月15日
    00
  • linux服务器上配置进行kaggle比赛的深度学习tensorflow keras环境详细教程

    本文首发于个人博客https://kezunlin.me/post/6b505d27/,欢迎阅读最新内容! full guide tutorial to install and configure deep learning environments on linux server prepare tools MobaXterm (for windows) …

    Keras 2023年4月8日
    00
  • keras ctc loss error: InvalidArgumentError: 修改ignore_longer_outputs_than_inputs=True

    tensorflow.python.framework.errors_impl.InvalidArgumentError: Not enough time for target transition sequence (required: 45, available: 39)4You can turn this error into a warning by…

    2023年4月8日
    00
  • win10 + anaconda3 + python3.6 安装tensorflow + keras的步骤详解

    下面是关于“win10 + anaconda3 + python3.6 安装tensorflow + keras的步骤详解”的完整攻略。 安装Anaconda3 首先需要安装Anaconda3。可以在Anaconda官网下载对应版本的安装包。下载完成后,双击安装包进行安装。安装过程中需要注意选择添加环境变量选项。 创建虚拟环境 接下来需要创建虚拟环境。可以使…

    Keras 2023年5月15日
    00
  • keras中的History对象用法

    下面是关于“Keras中的History对象用法”的完整攻略。 Keras中的History对象 在Keras中,我们可以使用fit()函数训练模型。在训练模型时,我们可以使用callbacks参数来指定回调函数。其中,History()是一个回调函数,它可以记录模型的训练历史。在训练模型后,我们可以使用History对象来查看模型的训练历史。下面是一个示例…

    Keras 2023年5月15日
    00
  • 在Keras模型中one-hot编码,Embedding层,使用预训练的词向量/处理图片

    最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的时候一些我自己很容易搞错的点。  一、与序列文本有关 1.仅对序列文本进行one-hot编码 比如:使用路透社数据集(包含许多短新闻及其对应的主题,包括46个不…

    2023年4月8日
    00
  • 2019最新win10 安装tensorflow1.4(GPU/CPU)+cuda8.0+cudnn8.0-v6 + keras 安装CUDA失败 导入tensorflow失败报错问题解决

          原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9747019.html     基本开发环境搭建 1. Microsoft Windows 版本 关于Windows的版本选择,本人强烈建议对于部分高性能的新机器采用Windows 10作为基础环境,部分老旧笔记本或低性能机器采用Windows…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部