上一篇使用caffenet的模型微调。但由于caffenet有220M太大,測试速度太慢。因此换为googlenet.

1. 训练

迭代了2800次时死机,大概20分钟。

使用的是2000次的模型。

2. 測试

2.1 測试批处理
在F:caffe-master170309新建例如以下图文件test-TrafficJamBigData03292057.bat。

.Buildx64Debugcaffe.exe test --model=models/bvlc_googlenet0329_1/train_val.prototxt -weights=models/bvlc_googlenet0329_1/bvlc_googlenet_iter_2000.caffemodel -gpu=0
pause

效果例如以下:

Caffe-5.2-(GPU完整流程)训练(依据googlenet微调)


2.2 測试单张图片

以下用训练出的模型,測试单个图片的准确率。

(參考model的使用)
改Debugclassfication.bat例如以下(測试单张图F:caffe-master170309dataTrafficJamBigData03281545testdu190416357.png)

通过手动执行可知须要3:67秒。故MFC程序的延时减少为4秒

这样比caffenet的11秒快得多了。

只是效果不准:10张图(5张堵、5张不堵)所有识别为不堵,效果例如以下:

Caffe-5.2-(GPU完整流程)训练(依据googlenet微调)

上述我觉得是训练的模型不好,故又一次训练。


3. 又一次训练  (參考

以下又一次训练googlenet模型。主要添加迭代次数和batch_size。

3.1 训练数据转lmdb格式和mean文件

因为之前用caffenet时。是以227*227的图片训练的(将crop_size设为227)。用227*227的图片測试的(直接将图由480*480转为了227*227)

此须要用480*480大小的又一次训练。

3.1.1 读取图片的标签,并将图片名+标签写入train_label.txt与test_label.txt里

在F:caffe-master170309dataTrafficJamBigData03301009目录里有2个目录、2个*.m,两个空的txt。
得到标签train_label.txt与test_label.txt

3.1.2 转换为lmdb格式
F:caffe-master170309Buildx64Debug下新建convert-TrafficJamBigData03301009-train.bat,内容例如以下:

F:/caffe-master170309/Build/x64/Debug/convert_imageset.exe --shuffle --resize_width=480 --resize_height=480 F:/caffe-master170309/data/TrafficJamBigData03301009/ F:/caffe-master170309/data/TrafficJamBigData03301009/train_label.txt F:/caffe-master170309/data/TrafficJamBigData03301009/TrafficJamBigData03301009-train_lmdb -backend=lmdb
pause
F:caffe-master170309Buildx64Debug下新建convert-TrafficJamBigData03281545-test.bat,内容例如以下

F:/caffe-master170309/Build/x64/Debug/convert_imageset.exe --shuffle --resize_width=480 --resize_height=480 F:/caffe-master170309/data/TrafficJamBigData03301009/ F:/caffe-master170309/data/TrafficJamBigData03301009/test_label.txt F:/caffe-master170309/data/TrafficJamBigData03301009/TrafficJamBigData03301009-test_lmdb -backend=lmdb
pause
分别执行,效果例如以下。且在F:caffe-master170309dataTrafficJamBigData03301009 目录内生成了TrafficJamBigData03301009-train_lmdb和TrafficJamBigData03301009-test_lmdb目录:例如以下:(8个文件)



3.1.3 生成均值文件

F:caffe-master170309Buildx64Debug下新建mean-TrafficJamBigData03301009.bat,内容例如以下:

compute_image_mean.exe F:/caffe-master170309/data/TrafficJamBigData03301009/TrafficJamBigData03301009-train_lmdb mean.binaryproto --backend=lmdb
pause 

3.1.4  复制文件
在caffe-master170309/examples下新建TrafficJamBigData03301009目录。
把刚才生成的Debug/mean.binaryproto和F:caffe-master170309dataTrafficJamBigData03301009TrafficJamBigData03301009-train_lmdb和F:caffe-master170309dataTrafficJamBigData03301009TrafficJamBigData03301009-test_lmdb复制到caffe-master170309/examples/TrafficJamBigData03301009里。
改动F:caffe-master170309examplesTrafficJamBigData03301009synset_words.txt为堵与不堵两类(注意budu在第一行,du在第二行,由于要和前面的label.txt相应)


3.1.5 新建文件

caffe-master170309/examples/TrafficJamBigData03301009里新建

空的RecognizeResultRecordFromCmdTxt.txt 

和 空的AnalysisOfRecognitionfromCmdTxt.txt

和 synset_words.txt(里面第一行是budu。第二行是du)
效果例如以下: 

Caffe-5.2-(GPU完整流程)训练(依据googlenet微调)


3.2 改动训练的“參数文件” & “模型结构”

3.2.1 编写训练bat(别急着执行) 參考1,參考2,參考我的微调笔记
在F:caffe-master170309目录下新建一个train-TrafficJamBigData03301009.bat文件。用于训练模型内容例如以下:

.Buildx64Debugcaffe.exe  train --solver=models/bvlc_googlenet0329_1/solver.prototxt --weights=models/bvlc_googlenet0329_1/bvlc_googlenet.caffemodel  --gpu 0
pause

3.2.2 參数文件solver.prototxt  參考我的微调笔记

test_iter: 100								#原来1000。改为100
test_interval: 1000							#test_interval: 4000->1000
test_initialization: false
display: 40
average_loss: 40
base_lr: 0.01								#原来base_lr: 0.01
											#来自quick_solver的是      lr_policy: "poly"   
											#来自quick_solver的是      power: 0.5
lr_policy: "step"
stepsize: 320000
gamma: 0.96
max_iter: 50000								#max_iter: 10000000->10000
momentum: 0.9
weight_decay: 0.0002
snapshot: 1000								#snapshot: 40000->1000
snapshot_prefix: "models/bvlc_googlenet0329_1/bvlc_googlenet"
solver_mode: GPU

3.2.3 网络模型文件train_val.prototxt  參考我的微调笔记
当中finetune出现error=cudaSuccess(2 vs. 0) out of memory?网上意思是:batch_size改小,将batch_size由原来的32改为2,由原来的50改为2.
(整个网络结构有2000行,仅仅改了前面2层和最后1层),改的部分截取例如以下:

前2层是:



最后1层是:

layer {
  name: "loss3/top-5"
  type: "Accuracy"
  bottom: "loss3/classifier123"	#原来是(3个):loss3/classifier  loss2/classifier    loss1/classifier
  bottom: "label"
  top: "loss3/top-5"
  include {
    phase: TEST
  }
  accuracy_param {
    top_k: 2					#原来是5
  }
}

3.2.4 測试模型文件deploy.prototxt參考我的微调笔记
改的第1层和倒数第2层。例如以下:

第1层例如以下:




倒数第二层例如以下:

layer {
  name: "loss3/classifier123"
  type: "InnerProduct"
  bottom: "pool5/7x7_s1"
  top: "loss3/classifier123"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 2				#原来是1000
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "loss3/classifier123"
  top: "prob"
}

3.2.5 执行F:caffe-master170309train-TrafficJamBigData03301009.bat文件,開始训练
1200张图(1200张训练+200张測试),迭代50000次,batch_size由“
32和50”改为“2和2

训练记录例如以下:

11:54開始。

iter40次,14秒。

推算的话

iter50000次,5小时。