实验代码
import torch import torch.nn as nn #y = wx + b class MyModel(nn.Module): def __init__(self): super(MyModel,self).__init__() #自定义代码 # self.w = torch.rand([500,1],requires_grad=True) # self.b = torch.tensor(0,dtype=torch.float,requires_grad=True) # self.lr = nn.Linear(1,1) self.lr1 = nn.Linear(1,10) # self.lr2 = nn.Linear(10,20) # self.lr3 = nn.Linear(20,1) def forward(self,x): #完成一次前项计算 # y_predict = x*self.w + self.b # return y_predict # return self.lr(x) out1 = self.lr1(x) # out2 = self.lr2(out1) # out = self.lr3(out2) return out1 if __name__ == '__main__': model = MyModel() # print(model.parameters()) for i in model.parameters(): print(i) print("*"*100) # y_predict = model(torch.FloatTensor([10])) # print(y_predict)
Linear实现线性回归,cuda版本
import torch import torch.nn as nn from torch import optim device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class MyModel(nn.Module): def __init__(self): super(MyModel,self).__init__() self.lr = nn.Linear(1,1) def forward(self,x): return self.lr(x) #准备数据 如果使用cuda,数据和模型需要to(device) x = torch.rand([500,1]).to(device) y_true = 3*x + 0.8 #实例化模型 model = MyModel().to(device) #实例化优化器 optimizer = optim.Adam(model.parameters(),lr=0.1) #实例化损失函数 loss_fn = nn.MSELoss() for i in range(500): #梯度置零 optimizer.zero_grad() #调用模型得到预测值 y_predict = model(x) #损失函数,计算损失 loss = loss_fn(y_predict,y_true) #反向传播计算梯度 loss.backward() #更新参数 optimizer.step() #打印部分数据 if i%10 ==0: print(i,loss.item()) for param in model.parameters(): print(param.item())
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch Model Linear实现线性回归CUDA版本 - Python技术站