MongoDB数据库查询性能提高40倍的经历分享

MongoDB是一款非关系型数据库,它的查询性能在大规模数据下可以得到进一步的提升。下面我们将分享一条MongoDB数据库查询性能提高40倍的攻略,包含两个示例:

1. 按条件查询数据时使用索引

MongoDB 是支持索引的,但当查询的条件不是在索引的字段上时,就不能利用索引查询,这样查询效率会非常低下。如果想要在非索引字段上执行查询,请尝试创建相关的索引,使查询条件在索引字段上,并且需要注意索引的顺序。

示例1:

假设集合中存储了一些电商网站的销售数据,其中包含了商品ID(productId)、商品名称(productName)、所属类别(category)、商品单价(price)和销售日期(saleDate)等信息。现需要查询该网站2022年1月1日至2022年1月31日之间所有的销售额和销售量。

查询代码如下:

db.sales.aggregate([
    {
        $match: {
            saleDate: {
                $gte: ISODate('2022-01-01'),
                $lt: ISODate('2022-02-01')
            }
        }
    },
    {
        $group: {
            _id: '$productId',
            salesQty: { $sum: 1 },
            salesAmount: { $sum: { $multiply: ['$price', '$qty'] } }
        }
    }
])

上述代码中,我们首先使用 $match 过滤条件,将销售日期范围限制在 2022 年 1 月 1 日至 2022 年 1 月 31 日之间,并按商品 ID 和销售日期进行分组,计算销售量和销售额。这个查询任务包含了 $match 和 $group 两个操作,都需要大量的计算资源。如果没有合适的索引,那么查询的耗时会很长。

为了优化该查询任务的性能,可以按照查询条件创建索引,代码如下:

db.sales.createIndex({ saleDate: 1, productId: 1 })

然后再次执行查询任务,您会发现查询结果的产生速度会快了很多。首先,MongoDB 可以根据索引查找符合查询条件的数据,这样效率更高,并且查询结果集也不会太大。在执行 $group 操作时,MongoDB 可以利用已经排序的数据,分组操作的速度比较快。

2. 简化查询中的过滤条件

当我们需要复杂的过滤条件进行数据筛选时,查询的效率就会受到影响。在实际应用中,可以对数据进行适当调整,使查询尽可能简化。具体来说,我们可以使用更简单的过滤条件、避免使用复杂表达式或逻辑运算符、避免对空值或缺失值进行运算等。

示例2:

假设我们需要查询集合中年龄超过18岁的用户中,最近一次登录日期早于2021年5月1日的用户信息,查询代码如下:

db.users.find({
    age: { $gt: 18 },
    lastLoginDate: { $lt: ISODate('2021-05-01') }
})

上述代码中我们使用了两个过滤条件,一个是年龄 (age) 大于 18,另一个是最近登录时间 (lastLoginDate) 早于 2021 年 5 月 1 日。在执行该查询任务时,MongoDB 需要考虑两个字段的数据,并根据条件判断是否满足条件。尤其是日期比较上,在 MongoDB 中日期常常会被转换成 Unix 时间戳进行计算,这种计算方式通常会比较耗时。

为了提高查询效率,我们可以尝试规避日期、逻辑运算等复杂逻辑,改为按照年龄进行筛选,代码如下:

db.users.find({ age: { $gt: 18 } }).filter(user => {
    return user.lastLoginDate < ISODate('2021-05-01')
})

上述代码中,我们首先使用 find 函数,按年龄筛选符合条件的用户,然后在结果集中进行过滤,返回最近一次登录日期早于 2021 年 5 月 1 日的用户,这样不仅简化了逻辑,同时也可以减少 MongoDB 的计算量,提高查询效率。

综上所述,通过优化查询条件和创建索引,可以让 MongoDB 的查询性能提高40倍,在实际使用中也可以遵循这些方法,提高 MongoDB 在大批量查询情况下的性能效率。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:MongoDB数据库查询性能提高40倍的经历分享 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • SpringBoot MongoDB与MongoDB GridFS基本使用

    SpringBoot MongoDB与MongoDB GridFS基本使用 1. 前言 在开发过程中,我们经常需要使用到数据库进行数据的存储和管理。MongoDB是一个开源的,高性能,面向文档的NoSQL数据库。在Java中,我们可以使用SpringBoot框架来连接MongoDB数据库,并支持使用MongoDB的GridFS进行文件的存储和管理。 2. M…

    MongoDB 2023年5月16日
    00
  • 精选30道Java笔试题解答(附答案)

    下面是针对“精选30道Java笔试题解答(附答案)”的完整攻略。 1. 了解题目类型 在开始解题前,需要先梳理一下这些题目的类型。Java笔试题大多数是基础知识的考察,需要熟悉Java的数据类型、循环、条件语句、面向对象等基本概念。另外,也会涉及到一些算法和数据结构的知识。具体来说,这些题目的类型包括但不限于以下几种: 选择题 填空题 编程题 在了解题目类型…

    MongoDB 2023年5月16日
    00
  • NoSQL优缺点与MongoDB数据库简介

    NoSQL优缺点与MongoDB数据库简介 什么是NoSQL数据库? NoSQL是Not Only SQL的简称,表示非关系型数据库。与传统的关系型数据库不同,NoSQL数据库采用了更加灵活的数据结构,如键值对、文档型、列族型、图形数据库等,且不需要遵循固定的模式(如表、列、约束)。 NoSQL数据库的优缺点 NoSQL数据库优点: 可扩展性好:NoSQL数…

    MongoDB 2023年5月16日
    00
  • MongoDB磁盘IO问题的3种解决方法

    下面是“MongoDB磁盘IO问题的3种解决方法”的完整攻略: MongoDB磁盘IO问题的3种解决方法 什么是MongoDB磁盘IO问题 MongoDB是一种流行的NoSQL数据库,但是在高负载的情况下,MongoDB可能会遇到磁盘IO问题,它会导致数据库性能下降,同时也会影响其他应用程序的性能。磁盘IO问题通常是由于写入数据与硬盘读取和写入操作之间的不平…

    MongoDB 2023年5月16日
    00
  • MongoDB整库备份与还原以及单个collection备份、恢复方法

    MongoDB整库备份与还原 备份方法 打开命令行界面,进入MongoDB的bin文件夹下,输入以下命令备份整个数据库: mongodump -h dbhost -d dbname -o dbbackup dbhost:数据库地址,示例为localhost dbname:需要备份的数据库名称 dbbackup:备份后的文件存放路径 在dbbackup路径下可…

    MongoDB 2023年5月16日
    00
  • Python中MySQL数据迁移到MongoDB脚本的方法

    下面是Python中MySQL数据迁移到MongoDB脚本的详细攻略,包含两条示例说明: 准备工作 安装MySQL和MongoDB数据库 安装Python的依赖包pymongo和pymysql pip install pymongo pymysql 数据库连接 在Python中连接MySQL和MongoDB数据库的方法如下: import pymysql i…

    MongoDB 2023年5月16日
    00
  • Python Scrapy框架第一个入门程序示例

    下面我将详细介绍“Python Scrapy框架第一个入门程序示例”的完整攻略及两条示例说明。 什么是Scrapy框架? Scrapy是一个基于Python的开源网络爬虫框架,可以帮助我们快速高效地爬取数据并进行处理。 Scrapy的安装方法 在使用Scrapy框架之前,我们需要先安装Scrapy。可以通过以下命令在命令行中安装Scrapy。 pip ins…

    MongoDB 2023年5月16日
    00
  • MongoDB学习笔记(六) MongoDB索引用法和效率分析

    MongoDB学习笔记(六) MongoDB索引用法和效率分析 在MongoDB中,索引是用于提高查询速度的一种重要方式。本篇笔记将重点介绍MongoDB的索引用法和效率分析。 一、 MongoDB索引原理 MongoDB索引原理与传统关系型数据库的索引原理类似。MongoDB会在集合中存储一个特殊的数据结构,用于支持快速的数据查找和访问。MongoDB索引…

    MongoDB 2023年5月16日
    00
合作推广
合作推广
分享本页
返回顶部